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EXECUTIVE SUMMARY 

CEPA was commissioned by the Office of Rail and Road (ORR) to study the potential application of econometric 
methods to calculate Network Rail’s marginal costs (or ‘variable costs’) for maintaining and renewing the rail 
network. These marginal costs form the basis of individual Variable Usage Charges (VUCs) which are paid by users 
of the network (passenger and freight train operators) depending on the number, type and weight of trains that they 
run. Currently, VUCs are based on an ‘engineering approach’, using the Vehicle Track Interaction Strategic Model 
(VTISM) operated by Network Rail to estimate the variable costs associated with additional traffic. 

The results of this feasibility study demonstrate that an econometric approach can be both feasible and a valuable 
complement to the engineering approach for determining variable charges. It is the preferred method for setting 
variable charges in a range of other relevant European jurisdictions, including France, Spain and Sweden. However, 
we find that the available data on renewals expenditure in Great Britain is of insufficient granularity – limited to just 5 
geographic regions – to control for differences in infrastructure characteristics that would influence the need for 
renewals activity, and then to identify a robust relationship between passenger and freight traffic and renewals 
expenditure. This is a significant limitation of the VUC rates reported in this paper and therefore we recommend 
caution when comparing our estimated VUC rates with the uncapped CP7 VUC rates which result from Network 
Rail’s current methodology. 

In the near term we would recommend using the econometric approach alongside the engineering approach to 
provide ‘check and challenge’ of the VTISM results. This combined framework would leverage the strengths of both 
methods. In addition, we recommend that ORR should encourage Network Rail to record renewals expenditure at a 
more granular level that would enable further econometric analysis to more accurately estimate marginal costs for 
all relevant cost categories. 

MAIN RESULTS 

The primary output of this study is a regression analysis of maintenance and renewals costs. We construct panel 
datasets to estimate marginal costs of traffic at the Maintenance Delivery Unit (MDU) level and regional level 
respectively, using data provided by Network Rail and ORR. Our regression estimates are then converted into a 
price list which facilitates an approximate comparison to Network Rail's current uncapped price list for CP7, noting 
that Network Rail’s actual CP7 price list includes some VUC rates (such as for freight) which are capped due to 
decisions taken by ORR in the PR23 final determination.1 We compare our estimates to the uncapped rates as this 
represents a more ‘like-for-like’ comparison of cost reflective rates. We estimate two different functional forms for 
our maintenance regressions: (1) a translog model which allows for non-linearities in the data; and (2) a simpler log-
log model which assumes constant elasticities between traffic and maintenance costs. 

Our results show that the implied elasticity of maintenance costs to passenger traffic are lower than the current 
engineering cost models would suggest. The elasticity to freight traffic produced by the log-log model is greater 
than the current models suggest but it is broadly similar between the translog model and the current models. This is 
based on maintenance cost regressions that produce robust results – particularly for passenger traffic – with 
positive and statistically significant coefficients that have plausible signs and magnitudes. Although the translog 
model does not yield statistically significant estimates for freight traffic, the coefficients remain stable across various 
model specifications. This stability suggests that we are estimating a robust result but that the statistical power of 
our models are reduced because there is relatively low residual variation in maintenance costs after accounting for 
changes in passenger traffic and controlling for other differences in variables across MDUs. 

We are confident in the validity of our estimated marginal maintenance costs of traffic, as they closely align with 
previous findings in the literature, including Wheat and Smith (2008). Using our translog model, we estimate 

 

1 The approach to capping VUC rates for freight operators is summarised in Network Rail (December 2023) “Final determination 
consistent price lists: key assumptions” p.8., available at networkrail.co.uk. 

https://www.networkrail.co.uk/wp-content/uploads/2023/12/Final-determination-consistent-price-lists-key-assumptions.pdf
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marginal costs of 9.81 pence per vehicle-mile for passenger traffic (compared to 8.39 pence in Wheat and Smith2) 
and £2.00 per kgtm for freight traffic (compared to £1.99 in the same study).  

Table E-1: Maintenance marginal cost comparison, 2023-24 prices 

Maintenance – 
marginal cost 

Metric CEPA (Log-log) CEPA (Translog) 
Wheat & Smith (2008) 

(Inflation adjusted) 

Passenger Traffic pence/vehicle-mile 17.31 9.81 8.39 

Freight Traffic £/kgtm 3.68 2.00 1.99 

Source: CEPA analysis 

However, we cannot be confident in the robustness of our renewals regressions. Statistical constraints which arise 
from having only 5 regions of observation and 10 years of data (i.e., 50 observations) limit the number of control 
variables that we can include in the regression models without impairing its statistical power – in other words, the 
models’ ability to identify significant relationships between the dependent and independent variables. Given these 
constraints, we estimated an elasticity with total traffic rather than separating passenger and freight traffic. The 
results are not robust to model specification, and as such, we do not consider them to be a reliable estimate of 
marginal costs or a robust basis for setting access charges. Nevertheless, these findings are presented in the report 
for completeness.  

Due to the lack of robustness of our results for renewals, we are only able to make an approximate, illustrative 
comparison with Network Rail’s CP7 uncapped price list. We adopt the same methodology as used in Network 
Rail’s existing VUC calculation file3 to convert our marginal cost estimates into a price list. We do not replicate the 
full price list, which is thousands of vehicles long, but instead present a simplified list. We also of necessity apply a 
series of assumptions and scaling factors in order to convert our marginal cost estimates into the relevant units 
(specifically, to convert our marginal costs from pence per train mile to £ per kgtm). We compare against uncapped 
CP7 rates to ensure a fair comparison, because following ORR’s PR23 final determination, freight VUC rates are 
capped below fully cost-reflective rates on the trajectory set at PR18.4  

As shown in the tables below, our estimates for passenger variable usage charges are lower than those in the 
current uncapped price list, while freight variable usage charges are higher under the log-log model and broadly 
similar under the translog model.  

However, given the limitations which affect the robustness of our renewals estimates, policymakers should exercise 
caution and avoid interpreting our estimated VUC rates as ‘accurate’ at the passenger and freight level. In 
particular, we do not think it is possible to conclude – on the basis of this analysis alone – that freight charges would 
be higher under an econometric approach, given that the translog model produces freight charges which are 
broadly similar to the current ‘uncapped’ rates. Further analysis on a more granular renewals expenditure dataset 
would produce different results which might be more robust and support a different conclusion. 

Moreover, this feasibility study is not intended to produce a perfectly like-for-like comparison of the econometrics 
approach to the engineering approach on which current rates are calculated. Specifically, the current engineering 
method excludes costs associated with certain assets which are not considered to be impacted by marginal 
changes in traffic, but which are included in our econometrics approach that looks at total maintenance and 
renewals costs. Therefore, the econometric approach might capture relationships between expenditure and traffic 
which are omitted under the engineering approach. 

 

2 We adjusted the figures reported in the Wheat & Smith (2008) study for inflation to ensure they are comparable to our marginal 
cost estimates. 
3 NR PR23 FD VUC model v2.2.xlsx provided by ORR on 10/10/2024. 
4 ORR (October 2023) “PR23 final determination: policy position – access charges” p.10., available at orr.gov.uk. 

https://www.orr.gov.uk/sites/default/files/2023-10/19-pr23-final-determination-policy-position-access-charges.pdf
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Therefore, we do not advocate for adopting the econometric method at present. Rather, the primary contribution of 
this paper is to demonstrate that, with more granular renewals expenditure data, an econometric approach is 
feasible in Great Britain.  

Table E-2: Average passenger variable usage charges, 2023-24 prices 

Average rate 
Vehicle Classification 

CEPA Log-log 
(Pence Per Vehicle 

Mile) 

CEPA Translog 
(Pence Per Vehicle 

Mile) 

Network Rail CP7 
(Pence Per Vehicle 

Mile) 
Locomotive 57.66 54.47 99.19 

Multiple unit (motor) 7.75 7.32 15.19 

Multiple unit (trailer) 9.67 9.13 11.70 

Coach 9.23 8.72 15.06  

Table E-3: Average freight variable usage charges, 2023-24 prices (uncapped CP7 rates) 

Average rate 
Vehicle Classification 

CEPA Log-log 
(£/kgtm) 

CEPA Translog 
(£/kgtm) 

Network Rail CP7 
(£/kgtm)  

Locomotive 12.29 8.56 7.53 

Wagon (laden) 6.73 4.69 4.55 

Wagon (tare) 2.79 1.94 1.76  

Source: CEPA analysis 

CONTEXT TO THIS STUDY 

The results of our feasibility study add to the discussion around the appropriate methodology for setting VUCs in 
Great Britain. The current ‘engineering approach’ is summarised in Figure E-1 below. Step 1 uses the VTISM to 
calculate total variable costs to be recovered from passenger and freight operators. Step 2 allocates these costs to 
vehicle types based on damage characteristics (for example axle load and speed), creating a detailed price list with 
charges per gross tonne-km that vary by vehicle type and freight commodity. 

Figure E-1: Current approach to estimating VUC 

 
Source: Network Rail, CEPA analysis 

This application of VTISM in Step 1 is not its original purpose. VTISM is described as “a whole life cost model for 
the vehicle–track system […] which links track and vehicle characteristics and maintenance regimes to track asset 
lives, replacement and maintenance costs” (Serco, 2012). In the context of setting VUCs, Network Rail uses VTISM 
to estimate the outputs and cost required to address the wear and tear imposed on the track and maintain whole 



 

7 

life track performance given forecast traffic growth for the next control period, which informs its SBP planning 
assumptions. It then calculates the additional maintenance and renewals costs (above those embedded in its SBP) 
that would be incurred in the next control period in a scenario where traffic is 5% higher by the end of the next 
control period relative to traffic at the end of the previous control period, to maintain the same level of residual asset 
lives and network performance. These additional costs represent the ‘variable’ costs that are used to set the basis 
of individual vehicle VUC rates in a separate calculation model.  

Whilst the approach to setting VUCs for CP7 is broadly similar to that adopted at CP6, the significant reduction in 
passenger train-km (and by extension passenger tonne-km) in 2021-22 means that the variable costs estimated in 
Step 1 are divided by a denominator that is smaller than the one used in the calculation of the CP6 charges. This 
increases the VUC rates relative to those calculated for CP6. Although mechanically this is a predictable result, it is 
worth noting that: 

• it implies that short-run marginal costs have increased with the lower traffic denominator; and 

• it produces a higher VUC for freight customers, despite freight traffic being largely unchanged since pre- 
Covid-19 and therefore causing roughly the same amount of damage to the track infrastructure. 

Freight stakeholders have expressed concern with the method and in the PR23 final determination ORR committed 
to review the issue in advance of CP8. In contrast to Network Rail's engineering cost modelling, most comparable 
European jurisdictions estimate variable access charges using an econometric approach. This alternative method 
addresses the shortcomings of the current approach by estimating marginal costs separately for passenger and 
freight traffic.  

Rather than advocating for immediate adoption as the sole basis for setting VUCs, in the near term we would 
recommend using the econometric approach alongside the engineering approach to provide ‘check and challenge’ 
of the VTISM results. This combined framework would leverage the strengths of both methods, providing a more 
comprehensive and reliable basis for future applications. 

NEXT STEPS 

The results of this study provide encouraging insights into the potential for econometric analysis to contribute 
meaningfully to the assessment of VUCs. While our findings suggest that maintenance models derived from 
econometric methods may be as effective as those used by other regulators, this does not imply an immediate 
readiness to adopt these models as the sole basis for VUC determinations. Instead, we recommend the following 
next steps to improve the available data and help interpret the results: 

• Developing a train-tonnage dataset for comparative analysis: Network Rail should establish a 
consistent tonne-km traffic dataset over at least the last 10 years. This is essential for a like-for-like 
comparison between current VUCs and the alternative “shadow VUCs” derived from econometric models. 
This will facilitate a clearer assessment of the model's accuracy and practical relevance (since ‘wear and 
tear’ is a function of both train movements and weight). 

• Capturing renewals expenditure at a sub-regional level: The key to identifying a robust econometric 
relationship between traffic and renewals depends on obtaining a more geographically granular renewals 
dataset. ORR should encourage Network Rail to adopt a larger number of smaller ‘sub-regional’ units for 
reporting renewals expenditure. 

To illustrate what this would mean if Network Rail were to adopt best practice from other European 
jurisdictions, SNCF Reseau records renewals expenditure at the track-section level5, encompassing over 
2,000 units of observation across the network (a similar level of disaggregation to the ‘route sections’ 
geography used in GBRTT’s ‘Industry Financial Model’). As we explain in Section 3.2, this enables a two-
stage approach to the modelling of renewals expenditure which facilitates an analysis with more variation in 

 

5 The track-section level in France is defined differently from the track-section level in Great Britain. However, the number of 
observations provides an indication of the volume of data Network Rail should aim to collect to effectively support the 
econometrics approach. 
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terms of the key infrastructure characteristics which drive differences in costs between those units, and 
therefore helps to isolate the variations in cost which are driven by changes in traffic. 

However, noting that 2,000 track/route sections would be a substantial change from Network Rail’s 
approach to recording renewals expenditure today, we expect that ORR might find an improvement in the 
robustness of the analysis if Network Rail were able to disaggregate costs across 25–50 sub-regional units 
(i.e., similar to the number of MDU units). 

• Understanding the differences between the engineering and econometric results: ORR and Network 
Rail should work together to better understand the differences in results between the econometric and 
engineering approaches, and the appropriateness of key assumptions from an asset management 
perspective. For example, the engineering approach relies on a narrower definition of 'direct costs' than 
that which is adopted in the econometric literature (and applied in this study) and also incorporates a 
‘constrained funding’ assumption which informs the mix of maintenance and renewals activities to take into 
account the practical limits in funding available to Network Rail over future control periods, which we 
cannot replicate in the econometric approach. Although operators should share in the benefit of these 
assumptions (in the form of lower variable charges) where they are robust, the relative advantage of the 
econometric approach is that, subject to the availability of sufficient and high quality data points for 
estimation, it can establish a statistically robust relationship between traffic and costs without relying on 
such assumptions. 

If the industry works together to address these issues over the coming years, we suggest that there is scope for 
econometric methods to play a more important role in setting variable charges directly in future periodic reviews.  
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1. INTRODUCTION 

CEPA was commissioned by the Office of Rail and Road (ORR) to study the potential application of econometric 
methods to calculate Network Rail’s marginal costs for maintaining and renewing the rail network as a potential 
basis for setting future Variable Usage Charges (VUCs). VUCs are paid by users of the network depending on the 
number, type and weight of trains that they run. 

Network Rail currently uses an ‘engineering approach’ to set the VUC. The engineering approach uses the Vehicle 
Track Interaction Strategic Model (VTISM) to estimate the 35-year cost of remedying the direct impact of increased 
traffic on the infrastructure asset (“wear and tear”). Against a baseline which is calibrated to the track performance 
outputs and used life percentages assumed in Network Rail’s CP7 Strategic Business Plan (SBP), Network Rail then 
calculates the increase in maintenance and renewals costs estimated by the model with a 5% increase in projected 
traffic (relative to the end of CP6). These ‘variable costs’ are then allocated to specific vehicle types based on their 
track wear characteristics in a separate VUC calculation model. However, following the PR23 recalibration, several 
stakeholders have raised concerns about this approach. Freight stakeholders, for instance, were concerned that the 
proposed charges would increase despite no significant change in freight traffic over the CP6 period – noting that 
ORR ultimately decided to continue capping freight VUCs below fully cost-reflective rates on the trajectory set at 
PR18.6. ORR also noted at PR23 that the large number of input variables to the VTISM model and the complex 
mechanism through which they interact with one another during and between control periods works against 
apportioning the drivers of the increase between freight and passenger in a precise manner. The proposed 
econometric approach aims to address these issues by offering a more data-driven and replicable approach.  

The application of an econometric approach to estimating VUC is relatively underexplored in Great Britain, although 
it is common practice in Europe. Our study seeks to address the limitations of past studies and explore whether an 
econometrics approach in Great Britain is feasible. Rather than directly comparing the econometric and current 
engineering approaches, we view them as complementary methods that could be used in parallel to enhance the 
robustness of the overall charging methodology. This project also identifies valuable opportunities for Network Rail 
to enhance data collection practices, improving transparency and supporting a more robust econometric 
methodology in the future. 

Following this introduction, the structure of this report is as follows: 

• Section 2 sets out the background to the project, covering the current VUC methodology in Great Britain 
and its current issues. 

• Section 3 summarises our literature review, focusing on econometric approaches to variable charges for 
rail networks in other European jurisdictions, which guides our methodology and highlights best practices. 

• Section 4 details the data requirements for the econometric approach and presents an analysis of our 
constructed dataset. 

• Section 5 describes our econometric methodology and its limitations. 

• Section 6 presents the main results, including estimated elasticities, marginal costs, and price lists. 

• Section 7 details our conclusions and discusses the implications of our findings for setting variable rail 
infrastructure charges in Great Britain going forwards. 

 

6 ORR (October 2023) “PR23 final determination: policy position – access charges” p.10., available at orr.gov.uk. 

https://www.orr.gov.uk/sites/default/files/2023-10/19-pr23-final-determination-policy-position-access-charges.pdf
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2. BACKGROUND 

2.1. VARIABLE USAGE CHARGES 

The variable usage charge (VUC) is a charge designed to recover the costs of operating, maintaining, and renewing 
the rail network that vary with marginal changes in traffic. In practice, this charge is set to recover a portion of 
maintenance and renewal costs (‘wear and tear’), as operating costs are generally assumed to remain mostly 
unaffected by traffic variations. The VUC applies to all operators using the network, including passenger, freight, 
open access, and charter services. The VUC is disaggregated by vehicle class and, in the case of freight services, 
also by commodity. Typically, heavier and faster vehicles incur a higher VUC, reflecting the relatively higher levels 
of wear and tear (damage) that they cause to the network. 

Under current legislation, the VUC should be calculated on the basis of the direct costs that Network Rail would 
incur as a result of a small change in traffic levels, assuming network capacity remains fixed. From an economic 
perspective, charging based on marginal costs ensures the most efficient use of infrastructure capacity, as the 
price reflects the true cost of providing the service.  

The VUC is designed to encourage operators to:  

(1) Use vehicles that cause less wear on the tracks 

(2) Only run services where the additional benefits outweigh the marginal wear and tear costs on the 
infrastructure.  

The two primary approaches to calculating VUCs are the engineering and econometric approaches. Network Rail 
currently uses an engineering approach, though some stakeholders have raised concerns about its methodology. A 
common alternative used in most other comparable European jurisdictions is the econometric approach, which 
could be adopted alongside reforms to the existing method. This feasibility study does not aim to directly compare 
the two approaches. Instead, we focus on the potential to use both the engineering and econometric approaches 
where appropriate, to enhance the overall robustness of the VUC methodology. 

2.2. ENGINEERING APPROACH 

Network Rail's current engineering approach follows a two-step process, as shown in Figure 2.1 below.  

Figure 2.1: Current approach to estimating VUC 

 
Source: Network Rail (2022); CEPA analysis 
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The first step involves estimating Network Rail’s total variable costs using the Vehicle Track Interaction Strategic 
Model (VTISM). VTISM is a strategic long-term planning tool used by Network Rail to forecast maintenance and 
renewal work costs and volumes based on track characteristics, track condition and age, volume and type of traffic, 
and the assumed relationship between traffic and historically observed rates of track degradation. VTISM is 
informed by a combination of datasets, including an inventory of over 600,000 individual track sections across the 
GB network which documents a variety of track section characteristics which are directly relevant to Network Rail’s 
maintenance and renewals planning. 

Although not its original purpose, Network Rail also uses VTISM to estimate the additional maintenance and 
renewals activities and costs that would be required in the next control period (over and above its SBP) to address 
the wear and tear imposed on the track and maintain whole life track performance under a scenario where traffic 
increases by 5% compared to the end of CP6. These costs are expressed on a per thousand gross tonne-mile 
(£/kgtm) basis. The total variable costs are then split by asset type - track, signalling, and civils.  

The traffic growth forecast used in the variable cost modelling is a matter of regulatory judgement. On the one 
hand, it is desirable to adopt a forecast which reflects the underlying growth in traffic – but this is challenging to 
forecast as demonstrated by the fall in passenger numbers and subsequent recovery in the aftermath of both the 
Global Financial Crises of 2008-09 and the Covid-19 restrictions of 2020-21. The +5% traffic growth assumption 
was first chosen for CP6 (and then again for CP7) because Network Rail considered that it should most closely 
represent the short run marginal cost increase. However, at CP5 Network Rail used a +20% traffic growth 
assumption because it was considered closest to the actual expected traffic increase over the medium term (Arup, 
2018).  

After determining the total variable costs, Network Rail allocates these costs to specific vehicle types based on 
characteristics that influence track wear. Key attributes considered in this allocation include axle load, speed, un-
sprung mass, and primary yaw stiffness. By analysing these factors, Network Rail assigns costs proportionally, 
ensuring that vehicles imposing greater demands on infrastructure are charged accordingly. This process results in 
detailed price lists for both passenger and freight vehicles, encompassing thousands of individual vehicle 
specifications. This approach aims to reflect the marginal costs associated with different types of rail traffic on rail 
infrastructure. 

However, freight stakeholders have expressed concern with the current methodology for CP7. There was a 
significant reduction in passenger train-km (and by extension passenger train tonnage) in 2021-22. This meant that 
the variable costs estimated are divided by a denominator that is smaller than the one used in the calculation of the 
CP6 charges, as total traffic (not disaggregated by passenger and freight) is used in VTISM. This produced a higher 
VUC for freight customers, despite freight traffic being largely unchanged since pre-Covid and therefore causing 
roughly the same amount of damage to the track infrastructure. 

2.3. ECONOMETRIC APPROACH 

Following best practice identified in our literature review, we use regression techniques to estimate the elasticity of 
maintenance and renewal costs with respect to traffic. This tells us, for example, that a 1% increase in passenger 
train-km increases maintenance costs by x%. We do this separately for passenger and freight, meaning that freight 
charges will not be significantly affected by changes in passenger traffic.  

We benchmark our estimated elasticities against those from previous studies to evaluate the validity and reliability 
of our results. These elasticities are then converted into marginal costs and allocated to a price list, following the 
same framework as the existing engineering methodology. 

Unlike an engineering model that relies on long-standing assumptions about the relationship between infrastructure 
characteristics and costs7, the econometric approach derives insights directly from the data. However, it depends 

 

7 These engineering assumptions are derived from observed data. However, there is less external visibility of these assumptions, 
how they interact, and how they are updated over time to reflect new evidence. 
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on specific statistical assumptions for validity. Thus, neither approach is inherently superior; each has its own 
advantages and limitations. Below, in Table 2.1, we outline the key theoretical strengths and weaknesses of using 
an econometric approach to calculate the VUC. 

Table 2.1: Evaluation of econometric approach 

Advantages of econometric approach Drawbacks of econometrics approach 

Data-driven insights: provides empirical results based 
on actual data, allowing for quantifiable relationships. 

Data quality issues: might limit usefulness. Requires: 
• Large sample size  
• Granular data. 

Clear metrics for comparison: allows comparison of 
elasticity estimates with those from other studies. 

Potential for p-hacking: risk of selectively reporting 
results to achieve statistically significant findings. 

Flexibility: can model complex relationships between 
costs and traffic, informed by the data. 

Costly to switch approach: requires econometrics 
expertise and high-quality data. 

Allows for formal hypothesis testing: provides the 
tools to test specific assumptions which may change 
over time using statistical methods. 

Model dependent: results can be dependent on 
model specification, choice of variables, and functional 
form. 

Transparent calculation of VUC: VUC is set at 
marginal cost, which is the estimated elasticity 
multiplied by average total costs. 

Uncertainty over total cost recovery: approach 
calculates marginal cost first and total cost recovery 
follows. Current approach calculates total marginal 
cost to recover and then average marginal cost. 

Source: CEPA analysis 

Finally, it is worth noting that the econometric approach is more of a ‘backwards-looking’ approach – in that the 
data used is by definition historical – and therefore it might be more susceptible to changes in the relationships 
between key variables going forwards. It relies on the assumption that if historic relationships are modelled robustly, 
it is reasonable to extrapolate them into the future. However, we do not consider this a clear disadvantage of the 
econometric approach relative to the engineering approach. Network Rail’s current engineering approach allows for 
the overlay of more ‘forward-looking’ assumptions, such as how it responds to a constrained funding envelope and 
incorporating the ORR’s view on efficiency gains over the upcoming control period. Although such factors are not 
typically applied to the econometric approach - and there is a strong argument that VUCs should reflect the future 
efficiency gains embedded in the SBP – these assumptions could also turn out to be speculative or inaccurate. In 
our view, this supports the view that both approaches are theoretically useful. 
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3. LITERATURE REVIEW 

Our literature review provides an overview of existing research on the econometric approach to estimate marginal 
costs in the rail industry. We address key issues related to the econometric approach, focusing on the selection of 
variables, the choice of functional form, and the appropriate panel data model to use. This enables us to develop a 
robust methodology for our study on the feasibility of using econometrics for determining the VUC in Great Britain.  

3.1. CURRENT APPROACHES 

According to the EU Commission Implementing Regulation 2015/909, infrastructure managers should base user 
charges on marginal costs to ensure the optimal use of available infrastructure capacity. Marginal cost pricing is 
known to lead to an efficient allocation of resources (Andersson et. al., 2012) because it ensures that the price 
charged for using a resource reflects the true cost of its provision. These marginal costs for setting VUC can be 
estimated using either engineering or econometric methods. 

Figure 3.1 shows the current VUC charging practices in Europe and Great Britain. Most countries employ an 
econometric approach to estimate marginal costs of maintenance and renewals with respect to traffic levels.  

Figure 3.1: VUC charging in Europe 

 

Source: Independent Regulators’ Group – Rail (2020); CEPA analysis 
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3.2. ECONOMETRIC APPROACH 

The econometric approach seeks to estimate the statistical relationship between costs (such as maintenance and 
renewals) and traffic levels, while controlling for infrastructure characteristics. This method allows the data to 
determine the relationship, rather than depending on a fixed set of engineering assumptions. However, it is 
important to recognise that the parametric methods employed, such as Ordinary Least Squares (OLS), are based 
on several assumptions regarding the data's distribution. Therefore, neither approach is inherently superior from a 
theoretical standpoint. 

The econometric approach to estimating VUC is most advanced in France and Sweden, where multiple studies 
over the past two decades have addressed several methodological and practical challenges, including the choice of 
functional form, panel data model, and variables to include. We extract key insights from this literature to inform our 
feasibility study and address the common challenges associated with the econometric method. 

In contrast, the application of such methods in Great Britain remains relatively underexplored, with only a limited 
number of studies conducted to date. Wheat and Smith (2008) used a cross-section of maintenance costs at the 
Maintenance Delivery Unit (MDU) level to estimate the elasticity of maintenance costs with respect to traffic; 
however, their analysis was constrained by a small number of observations. Wheat, Smith, and Matthews (2015) 
employed a vector-autoregressive (VAR) model to estimate both short-run and long-run marginal costs of traffic on 
maintenance and renewals, but their approach did not account for the endogeneity arising from the use of lagged 
dependent variables. Our study seeks to address these limitations and explore whether an econometric approach 
in Great Britain is feasible. 

Under an econometric approach, cross-country evidence on marginal costs is difficult to compare because 
marginal costs are influenced by scale effects and therefore vary between countries. Consequently, the literature 
typically focuses on estimating elasticities, which are scale-free and enable valid comparisons. European-wide 
studies provide useful insight into the range of maintenance and renewals elasticities with respect to rail traffic. We 
can use these estimated elasticities to validate our empirical findings from our econometric analysis.  

The European-wide CATRIN study (Wheat et al., 2009) found that the mean elasticity for maintenance ranged from 
20% to 35%, with a higher elasticity observed at greater traffic density. When maintenance and renewals costs 
were combined, the study reported an average elasticity of 35%. In Great Britain, Wheat and Smith (2008) 
estimated a marginal cost of 8.39 pence/vehicle-mile for passenger traffic and a marginal cost of 1.99 £/kgtm for 
freight traffic on maintenance costs based on an estimated mean elasticity of maintenance costs with respect to 
passenger and freight traffic of 25%.8 We use these studies to validate our estimates of traffic elasticities and 
marginal costs in Section 6 of the report. 

In the following sections, we examine the main challenges associated with using an econometric method and 
explore the potential solutions. 

Costs Selected for VUC 

There is debate on which costs should be included within the marginal cost estimation, particularly concerning: 

• Renewals costs, which are irregular and substantial, with most track sections experiencing zero renewals 
in a given year.  

• Signalling maintenance. It is not clear whether signalling maintenance should be included in the 
calculation of VUC because train traffic does not necessarily contribute to wear and tear on signals.  

Odolinski et. al. (2023) argue that signalling maintenance should be included in the calculation of variable usage 
charges as an increase in traffic may increase signalling maintenance costs, not because of wear and tear but due 
to other economic factors. When traffic increases, the cost of possessions increases, and a given asset failure will 
cost more given higher traffic. As a result, inspections will be carried out with greater frequency to prevent these 

 

8 We adjusted the figures reported in the paper for inflation to ensure they are comparable to our marginal cost estimates. 
Average elasticity taken from Wheat and Smith (2008) Table 6, see Model 3 on p.206. 
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asset failures. This argument is supported by the authors finding a positive statistically significant relationship 
between traffic and signalling maintenance costs. SNCF Reseau (2023) used this analysis to update its 
methodology for calculating variable usage charges to include signalling maintenance costs in its most recent 
review of charges for French rail infrastructure. We include all maintenance costs in our maintenance regressions. 

Renewals is a major cost category that is currently included in the calculation of variable usage costs in Great 
Britain using an engineering approach and is typically included in methods which featured in our literature review. 
However, as noted above, renewals pose a problem when adopting an econometric approach as they are lumpy 
and substantial in cost. For any given year, most track sections are likely to experience zero renewals.  

In earlier studies, maintenance and renewals were simply added together to avoid the problem of zero cost for 
some sections of the track. This might be considered a second-best option because the estimated cost elasticity is 
no longer the elasticity of maintenance or renewals but some average of the two. However, Andersson et al (2012) 
and Odolinski et al (2020) explored two ways to more accurately estimate the elasticity of renewals with respect to 
traffic, where maintenance can be regressed separately. 

The first approach is a form of ‘survival’ analysis, which estimates the probability of renewals occurring on a given 
track section as a function of the traffic occurring on this track section and the control variables. This requires 
assumptions on the distribution of renewals, from which the cost elasticity of renewals can be estimated. The 
second approach is a two-stage model, which estimates the probability of renewals occurring in the first stage and 
the cost of renewals given they occur in the second stage. This is a generalisation of the Tobit model, where the 
relationship between traffic, controls and costs are not forced to be the same in the first and second estimation 
stages. 

The two approaches were compared by Odolinski et al (2020) using 16 years of track section data. The two-part 
model was preferred as it asks both how traffic affects the decision to renew and then how traffic affects the cost of 
renewals. This was the approach adopted by France in SNCF’s most recent determination. We therefore run 
separate regressions for maintenance and renewals costs. Our preferred approach to renewals costs would have 
been to run a similar two-stage model. However, due to limited availability of geographically detailed renewals data 
(i.e., at track section or route section level), we were unable to implement this approach in this study. 

Functional Form 

The econometric approach requires an assumption about the functional form of the relationship between 
maintenance or renewals costs and traffic. Various data transformations assume different functional forms, which 
typically trade-off flexibility for transparency. The most used transformations to estimate marginal costs are the log-
log, translog, and Box-Cox models. Smith et. al. (2016) find that elasticity estimates vary depending on the 
functional form used, estimating different maintenance elasticities using various models, including the translog and 
Box-Cox models. 

The log-log model assumes that there is linear relationship between the log of cost and the log of traffic. This 
functional form is widely used in other sectors (e.g., by Ofgem in the energy sector for cost assessment), although 
is not widely considered in the transport literature due to its more restrictive assumptions on the shape of the cost-
traffic relationship. The main advantage of the log-log model is that it is relatively transparent and easy to interpret 
(Goldberger, 1968), because the coefficients estimated are elasticities. In a regulatory context, the interpretability 
and transparency of results is important because this ensures that stakeholders can understand and trust the basis 
for decisions and results are more easily replicated. Another advantage of the log-log model is that it places fewer 
demands on the data compared to more complex models. When data limitations result in insufficient statistical 
power to accurately estimate all parameters in a more complex model, such as the translog model, the log-log 
model becomes a more suitable choice. Its simplicity makes it effective and reliable in situations where data 
constraints prevent the identification of every term in a more complex model. 

A related functional form is the translog model, which incorporates non-linear log terms to allow for more flexible 
relationships. Interestingly, the translog model serves as a second-order approximation to any general functional 
form, making it a flexible tool for empirical analysis (Christensen et. al., 1973). The translog model is commonly 
used by regulators in Europe due to its flexibility. Unlike the log-log model, which assumes constant elasticity, the 
translog model does not impose restrictions on elasticities, allowing for a more accurate representation of how 
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marginal costs change with varying traffic levels. This adaptability helps avoid the potential bias in elasticity 
estimates that can occur with the log-log model if the actual relationship between variables is not constant. 

The transport literature often compares the translog model to the Box-Cox transformation. The Box-Cox 
transformation is a generalisation of the logarithmic transformation which aims to transform a variable so that it 
more closely represents a normal distribution. The Box-Cox transformation is the most general functional form, 
nesting the other functional forms including the linear, log-log and translog models. Gaudry and Quinet (2009) and 
Silavong, Guiraud and Brunel (2014) both use a generalised Box-Cox transformation to estimate the elasticity of 
cost as traffic changes using French data. They argue that a Box-Cox transformation offers more flexibility than the 
log-log model, which allows for a more representative estimate of the marginal costs.  

However, there are some disadvantages to using the Box-Cox transformation, which are cited in the French 
regulator’s decision to move from a Box-Cox transformation to a translog model (Frontier Economics, 2017). 
Models using a Box-Cox transformation are estimated using maximum likelihood, because the ‘power parameter’ 
which determines the specific shape of the data must be estimated at the same time as the parameters of interest. 
Maximum likelihood estimation (MLE) uses an optimisation routine which may not always converge. This means that 
results from the Box-Cox model are not always replicable. Using simpler models estimated using least squares 
rather than MLE also allows for more statistical tests to be conducted, such as tests for linearity, normality of 
residuals, homoscedasticity, and multicollinearity, thereby facilitating a more thorough evaluation of the model’s 
validity and robustness. Additionally, the Box-Cox model has greater data requirements, and in contexts with limited 
data, it may not be possible to robustly estimate all parameters. 

Given the data limitations outlined in Section 4, we consider the log-log and translog models to be the most suitable 
choices for this study. 

Dealing with Zeros in the Dependent Variable  

The main limitation of using a functional form based on the log transformation is that observations have to be strictly 
positive, since log(0) is undefined. This issue becomes increasingly relevant as data is more disaggregated. In our 
study, where data is aggregated at an MDU or regional level, this is not a concern. However, at a more granular 
level, this limitation can pose practical challenges, as certain track sections may have zero traffic for specific types, 
making log transformations problematic. 

The methods for dealing with zeros is discussed by Gaudry and Quinet (2009), who offer three solutions. The most 
common solution is to add a positive constant to all observations (e.g., log(y+1)), making the log-transformation 
possible. However, the choice of constant is discretionary and may arbitrarily bias results. The size of the bias 
depends on the specific data, meaning there is no best choice of constant (Winkelmann, 2008). 

Secondly, one could exclude track sections with no traffic. This approach may be suitable for models with coarse 
traffic definitions (i.e., passenger and freight) where most track sections have at least some traffic of both types. 
However, as the number of zeros increase, this approach becomes less appropriate because it introduces a 
selection bias and has context-dependent consequences (Bellego et al. 2022). 

The third alternative proposed is to use dummy variables to exclude observations with zero traffic. The model could 
include a dummy variable that is equal to 1 if that track section has positive traffic of a certain traffic type. These 
dummy variables can be interacted with the parameters of interest to ensure that the parameter is estimated using 
only the data with positive traffic (i.e., the freight coefficient uses all track sections that have positive freight traffic). 
The authors consider that this is the best approach when traffic is more finely split. 

Panel Data Model 

The data we use to estimate marginal costs exhibits a panel structure, which means that there are observations 
over different units (e.g., MDUs) and over time. This enables us to write a simplified relationship between costs and 
traffic as: 

ln𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 ln𝑄𝑄𝑖𝑖𝑖𝑖 + 𝛽𝛽2 ln𝑋𝑋𝑖𝑖𝑖𝑖 +  𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 
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Where 𝐶𝐶𝑖𝑖𝑖𝑖 is the maintenance or renewal cost on track section 𝑖𝑖 at time 𝑡𝑡, 𝑄𝑄𝑖𝑖𝑖𝑖 is the measure of traffic and 𝑋𝑋𝑖𝑖𝑖𝑖 is the 
vector of control variables. The error is broken into two parts, one specific to each unit of observation 𝑢𝑢𝑖𝑖 and 
another idiosyncratic error. Ignoring the panel nature of the data will lead to biased estimates of the marginal cost if 
the unobserved unit-specific effect 𝑣𝑣𝑖𝑖 is correlated with traffic. Smith et. al. (2023) provides a useful discussion of 
the relative merits of different panel data models used for estimating marginal costs, with the most relevant ones 
being fixed effects and random effects. 

The fixed effects model removes the track section effect 𝑣𝑣𝑖𝑖, which allows for an unbiased estimate of marginal costs 
and requires less restrictive assumptions than the random effects model. However, including a fixed effects term 
removes variation in the time-invariant characteristics of track sections. By removing this ‘within-group’ variation, 
the fixed effects model is less efficient (has larger standard errors) than random effects, which means that a 
statistically significant relationship is less likely to be found. 

The random effects model uses both the ‘between’ (cross-section) and ‘within’ (over time) variation, making it more 
efficient than fixed effects. It also allows the inclusion of time-invariant explanatory variables, which is not possible in 
a fixed effects model. The necessary assumption for random effects is that the individual-specific effect 𝑣𝑣𝑖𝑖 is 
random and uncorrelated with the explanatory variables in the model (e.g., traffic). If this assumption does not hold, 
then the random effects model is biased. It is possible to test the assumption of the individual effect 𝑣𝑣𝑖𝑖 being 
uncorrelated with traffic and other explanatory variables using the Hausman test (Hausman, 1978). In our analysis, 
we employ both fixed effects and random effects models to enhance robustness and to ensure the reliability of our 
results. 
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4. DATA REQUIREMENTS, COLLECTION AND PREPARATION 

4.1. DATA REQUIREMENTS 

To reliably estimate marginal costs using an econometric approach, high-quality data is essential for drawing robust 
conclusions. This requires detailed data on maintenance and renewal costs, traffic volumes, and a broad array of 
infrastructure controls, captured at a granular level and over an extended timeframe. These data requirements are 
necessary to identify significant, non-spurious statistical relationships of traffic and costs. 

For regression analysis, we require three types of variables: 

• Costs: Network Rail’s actual realised maintenance and renewals costs at an annual frequency. These costs are 
the dependent variable in our regression equations. These should be in real terms to account for inflation. 

• Traffic: Traffic is our main explanatory variable. Traffic could be measured in train-km, vehicle-km or tonne-km 
and should be split by freight and passenger. Traffic should be measured at the same disaggregation as costs. 
It may be the case that different measures of traffic are better suited to explaining costs, depending on the 
category of cost being analysed. For example, it may be the main (variable) cost driver for signalling 
maintenance is the cost of the possession. If this were the case, train-km would be a more accurate cost driver 
than gross tonne-kms. 

• Controls: Obtaining an unbiased estimate through linear regression depends on the Conditional 
Independence Assumption, which requires that all relevant variables are observable and adequately controlled 
for. The controls we include are designed to capture additional factors influencing maintenance and renewal 
costs that may correlate with traffic, enabling us to effectively isolate the impact of traffic on marginal costs. 
Ideally, the controls should vary over time and across observations and may include variables reflecting 
infrastructure differences between observations (such as track age, soil type, curvature, etc.), as well as other 
cost drivers, like regional wage indices. Failing to account for these variables could lead to omitted variable 
bias in our estimates. 

Given the panel nature of our data, we need observations spanning multiple years. However, we aim to avoid 
including older years that may not reflect the current relationship between traffic and costs. A ten-year period 
strikes a balance between historical depth and relevance. To account for the impact of Covid-19 on traffic and cost 
relationships, we incorporate within-model controls, such as year fixed effects and time trends, rather than 
excluding the Covid-affected years. This approach allows us to address potential distortions without sacrificing 
valuable data, as discussed further in Section 5.1.2. 

To identify meaningful statistical relationships, we need highly granular data. This is the main limitation of our study. 
Aggregated regional data may mask specific patterns found at the track section level, where renewal needs depend 
on factors like age, curvature, and traffic, which are often averaged out at the regional level. This aggregation limits 
insights into specific track characteristics that directly influence maintenance and renewal costs.  

Finally, a large number of observations is needed to strengthen the reliability and validity of regression estimates. A 
large sample size increases statistical power, making it easier to detect real relationships among variables. 
Additionally, more data mitigates the influence of outliers and supports a robust, generalisable analysis. In 
econometric modelling, particularly when controlling for multiple variables, an extensive dataset allows for a more 
detailed examination of complex relationships, ensuring that nuanced dynamics among variables are effectively 
captured. 

Ideally, we would observe data at the track section level.9 There are approximately 600,000 track sections across 
Network Rail’s footprint, and these are aggregated into approximately 2,000 route sections. Econometric analysis in 
France and Sweden occurs at a level similar to the route section. For example, Smith et al. (2023) utilized data 

 

9 A "track section" refers to a specific segment of a railway line that serves as a very disaggregated unit of analysis. Datasets at 
the track section level contain over 600,000 observations, which is well-suited for econometric analysis. 
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processed by SNCF Réseau, analysing 1,080 route sections per year, while Odolinski et al. (2023) used a more 
restricted sample of 633 route sections. In Sweden, Smith et al. (2021) used cross-sectional data with 244 route 
section observations, and Odolinski et al. (2020) used 260 route section observations. 

At the outset of this project, we collaborated with Network Rail and ORR to identify the levels at which data on 
traffic, costs, and control variables are consistently collected and accessible. Network Rail currently provides annual 
data on traffic and maintenance costs to ORR at the MDU-level, along with traffic and renewals cost data at the 
regional level. However, with only 35 MDUs and 5 regions, the limited granularity of this data presents a significant 
constraint for detailed analysis. We requested further disaggregated data on actual costs and traffic. However, after 
discussions with Network Rail, it became clear that this data was either not collected or not readily accessible, and 
Network Rail was not able to produce it within the timescales of this project. Therefore, our maintenance dataset is 
at the MDU-level and our renewals dataset is at the region level. 

4.2. DATA COLLECTION AND PREPARATION 

We combined several datasets provided by Network Rail and ORR to undertake our analysis. We produced an 
MDU-level dataset for maintenance regressions and a region level dataset for renewals regressions, as cost data at 
a more granular level was not available. Figure 4.1 below shows our process for creating the final datasets used in 
our analysis. We discuss each component in more detail below. 

Figure 4.1: Constructing datasets for regression analysis 

Source: CEPA analysis 
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Controls 

Our regression models aim to approximate a cost function for maintenance and renewals costs. To estimate the 
impact of traffic on costs, we need to appropriately control for other variables in the cost function which also affect 
these costs. This includes infrastructure characteristics such as track age and input costs such as regional wages. 

A detailed cross-section of infrastructure data for each track section was provided by Network Rail which we use 
for control variables in our regression. This dataset provides a snapshot of the state of the infrastructure across 
Network Rail’s network in 2024, containing information on 646,000 track sections. We focused on running line track 
and aggregated these observations to MDU-level. Most variables were aggregated using a weighted average, with 
observations weighted by track length. Switches were counted for each MDU.  

A limitation of this dataset is that we were only provided data for 2024. This means that we have a cross-section of 
infrastructure controls that do not vary over time. Another limitation is that three new MDUs were created in 
2021/22. We removed these new MDUs created because they were missing expenditure data for all observations. 

We complemented this cross-sectional dataset with a panel of track age variables at the track section level 
provided by Network Rail. This track summary panel data enabled us to calculate track, sleeper and ballast age on 
each track section for each year between 2014-2023. This is important because age is a useful predictor of 
maintenance and renewals activity.10 This dataset also contained information on the rail and sleeper types, enabling 
us to calculate time-varying control variables relating to track, ballast and sleeper age, as well as rail weight and 
sleeper material. We merged this with the cross-sectional track section data and aggregated to the MDU-level. 

ORR provided us with their cost benchmarking dataset, which contains some additional infrastructure controls at 
the MDU-level over time, such as the proportion of track electrified and the proportion of high-speed rail. 

We combined these datasets with regional wage data constructed from ONS (2024) ASHE data. We only control 
for regional wages in our regression, because standard regulatory practice is to assume that there are national or 
international markets for other inputs (e.g., materials and machinery). Consequently, the prices of these inputs are 
unlikely to materially differ by region and so will be absorbed within the constant term (Wheat and Smith, 2008).  

Costs and traffic 

The source of historical maintenance and renewal costs and freight and passenger traffic data was ORR’s cost 
benchmarking dataset. This contains maintenance costs and traffic data at an MDU-level, but renewals costs at the 
regional level. This dataset spans 2014-2023, providing us with 10 years of observations.  

A summary of all variables used for our regression analysis are shown in Table 4.1 below. 

Table 4.1: Summary of variables 

Data source Variable Description 

Track summary 
cross-section 

ID Unique ID for the section of track 

Switch ID Asset ID for Switches and Crossings units 

Region Network Rail Region 

IMDM Maintenance delivery unit  

Track Priority Track Priority (running lines, open sidings, closed lines, 
private lines) 

Earthworks – 
Embankment 

1 = any embankment; 0 = no embankment 

 

10 Most track assets have an expected asset life and Network Rail will typically expect to replace those assets as they approach 
life expiry. However, expected life might vary by location and intensity of use – so track on a busy route section might typically 
be replaced every 25 years, whereas track on a remote rural route might deliver acceptable condition for 40 years or longer. 
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Data source Variable Description 

Earthworks – Soil 
Cutting 

1 = any soil cutting; 0 = no soil cutting 

Earthworks – Rock 
Cutting 

1 = any rock cutting; 0 = no rock cutting 

Curvature Track curvature (1 / radius in meters) 

Cant Track cant (mm) 

Switch Dummy 1 = is a switch or crossing; 0 = not a switch or crossing 

Track summary 
panel data 

ID Unique ID for the section of track 

Year Year variable from 2014 to 2023 

Rail Year Year that the (left) rail was last renewed 

Rail Age Rail Year – Year  

Sleeper Year Year that the sleepers were last renewed 

Sleeper Age Sleeper Year – Year  

Ballast Year Year that the ballast was last renewed 

Ballast Age Ballast Year – Year  

Rail Type Description of rail type and weight (lbs) 

Sleeper Type Description of sleeper type (metal/concrete/wood) 

Cost 
benchmarking 
data 

MDU Maintenance delivery unit 

Region Network Rail region 

Year Year variable from 2014-2023 

Maintenance 
expenditure 

Nominal maintenance expenditure (£m) at the MDU-level 

Renewals 
expenditure 

Nominal renewals expenditure (£m) at the regional level 

Passenger traffic Passenger train-km 

Freight traffic Freight train-km 

Electrification Proportion of MDU track that is electrified. 

Signals Number of signals contained within each MDU 

Low Speed Proportion of track classified as low speed (0-35mph) 

Mid Speed 1 Proportion of track classified as mid-speed 1 (40-75mph) 

Mid Speed 2 Proportion of track classified as mid-speed 2 (80-105mph) 

High Speed Proportion of track classified as high speed (110-125mph) 

ONS ASHE  Wages Indices capturing differences in wages for each MDU 

Source: CEPA analysis 

We merged the datasets above to create a panel dataset for maintenance at the MDU-level and a dataset for 
renewals at the regional level (Eastern; North West and Central; Scotland; Southern; Wales and Western). 
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5. METHODOLOGY 

In this section, we set out our methodology for estimating VUCs using an econometric approach. The first step 
involves using regression techniques to estimate the elasticity of costs with respect to traffic. The reality of empirical 
research is that data limitations will always inform several modelling decisions. We present the feasible regression 
approach employed in this study – given the available data – to estimate maintenance and renewals elasticities with 
respect to passenger and freight traffic. In our view, the approach adopted here is ‘second best’ and significantly 
limited by the unavailability of more granular data on renewals expenditure. To support ORR’s future exploration of 
these issues, we present our preferred ‘first best’ approach in Appendix A3. 

Using the approach presented in the section, we then convert the estimated elasticities into marginal costs, which 
we discuss in Section 5.2. Finally, we discuss our approach to calculating a comparable price list using the 
estimated marginal costs. 

5.1. REGRESSION APPROACH 

In this section, we outline our actual approach, which differs from our preferred method due to data limitations. As 
noted in Section 4, our maintenance dataset includes observations across 35 MDUs, while the renewals data 
includes observations across 5 regions. The small number of regional units reduces the number of observations in 
the panel dataset and therefore the available statistical power, making it challenging to estimate more complex 
models and preventing robust statistical analysis for renewals.  

Panel data model 

Given that we are working with panel data, a key decision is how to model unobserved heterogeneity (𝑢𝑢𝑖𝑖), which 
affects the consistency and efficiency of the regression results. Unobserved heterogeneity 𝑢𝑢𝑖𝑖 can be modelled 
using either fixed effects or random effects, although we estimate both models for robustness. The RE estimator 
relies on the assumption that the unobserved effects are uncorrelated with the observed variables included in the 
regression. If this assumption holds, then RE is the most efficient estimator. This is because RE leverages both 
between and within variation to estimate coefficients, which means that the standard errors will be smaller and that 
the coefficients will be more accurately estimated. The FE estimator is always consistent but is less efficient as it 
only uses within variation, so should only be used if the RE assumptions do not hold. We can use the Hausman 
(1978) test to help choose between fixed effects and random effects. The Hausman statistic is distributed 𝜒𝜒2 and is 
computed as 

𝐻𝐻 = (𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅)𝑇𝑇(𝑉𝑉𝐹𝐹𝐹𝐹 − 𝑉𝑉𝑅𝑅𝑅𝑅)−1(𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅) 

Where 𝛽𝛽𝐹𝐹𝐹𝐹  is the FE estimator that is known to be consistent and 𝛽𝛽𝑅𝑅𝑅𝑅  is the RE estimator that is only consistent (and 
efficient) under the null. The null and alternative hypothesis are: 

𝐻𝐻0: 𝐸𝐸[ (𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅) ∣∣ 𝑋𝑋 ] = 0 

𝐻𝐻1: 𝐸𝐸[ (𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅) ∣∣ 𝑋𝑋 ] ≠ 0 

If the null hypothesis holds, and both FE and RE estimators are consistent, then there should be no systematic 
differences between the two estimators. Therefore, RE should be chosen. If there exists a systematic difference in 
the estimates, there is reason to doubt that the RE assumptions hold, and FE should be used. 

Maintenance regression 

For robustness, we estimate two different functional forms for our maintenance regressions. Consistent with our 
preferred approach (see Appendix A3), we employ a translog model, represented in the equation below, which 
allows for non-linearities in the data.  

ln𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 + 𝛽𝛽2 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝛽𝛽3(ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃)2 + 𝛽𝛽4(ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 )2 + 𝛽𝛽5 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝑿𝑿𝑖𝑖𝑖𝑖𝛾𝛾 + 𝛿𝛿𝑡𝑡 + 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 
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The elasticities of interest from the translog model are derived by differentiating the cost function with respect to 
passenger and freight traffic, as shown below. 

𝜀𝜀𝑖𝑖𝑖𝑖𝑃𝑃 =
Δ ln𝐶𝐶
Δ ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃

= 𝛽𝛽1 + 2𝛽𝛽3 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 + 𝛽𝛽5 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹  

𝜀𝜀𝑖𝑖𝑖𝑖𝐹𝐹 =
Δ ln𝐶𝐶
Δ ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹

= 𝛽𝛽2 + 2𝛽𝛽4 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝛽𝛽5 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃  

However, even at the MDU-level, our dataset lacks sufficient statistical power to precisely estimate all parameters of 
the translog model. While we report the results of the translog model in Table 6.4 and discuss them in detail in the 
appendix, achieving statistically significant results is essential for drawing meaningful inferences and robustly 
estimating marginal costs. 

Therefore, our primary model is the log-log model, which assumes constant elasticities between passenger traffic 
and maintenance costs, as well as between freight traffic and maintenance costs. This simpler model is more robust 
given our data limitations, as it requires estimating fewer parameters. However, the assumption of constant 
elasticity may not fully capture the complexities of the relationship between traffic types and maintenance costs. 
This limitation underscores the need for more disaggregated data collection to enable the application of more 
advanced modeling techniques in future analyses. The log-log model is shown below. 

ln𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 + 𝛽𝛽2 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝑿𝑿𝑖𝑖𝑖𝑖𝛾𝛾 + 𝜕𝜕𝑡𝑡 + 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

Year fixed effects (𝛿𝛿𝑡𝑡) are included in our regression models to capture economy-wide trends that are common to 
all units (i.e., track section). We model unobserved heterogeneity 𝑢𝑢𝑖𝑖 using fixed effects (FE) and random effects 
(RE) specifications. 𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃  is a measure of passenger traffic while 𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹  is a measure of freight traffic. We use real 
maintenance costs to account for the effects of inflation and passenger and freight traffic is measured in train-km.  

The coefficients 𝛽𝛽1 and 𝛽𝛽2 can be interpreted as elasticities of maintenance costs with respect to passenger and 
freight traffic respectively. 

Limitations 

Our approach to estimating the marginal cost of traffic on maintenance involves several limitations that may impact 
the robustness and accuracy of our findings: 

• Use of Year Fixed Effects: The inclusion of year fixed effects controls for time-related variation that is 
consistent across entities, capturing broad annual trends such as economic growth or policy changes. 
However, this approach also absorbs year-to-year variations in traffic and maintenance costs that could be 
relevant for estimating the marginal cost of traffic. By controlling all time-related factors in this manner, we 
risk excluding relevant annual fluctuations in the data that may offer insights into the relationship between 
traffic and maintenance costs. We tested alternative ways of accounting for time effects to mitigate this 
limitation in the appendix. Our findings suggest that year fixed effects provide the best fit for capturing year-
by-year variation in maintenance expenditures, so we are satisfied that our approach is robust. 

• Lack of Granular Data: Limited data granularity restricts our model's ability to capture detailed and 
nuanced relationships between variables. With maintenance data aggregated at the MDU-level, specific 
attributes of individual track sections—such as varying traffic intensities, track age, and local conditions—
are not fully reflected. This limitation is more pronounced for the translog model, as it relies on more 
detailed data to estimate flexible elasticities and interaction effects. The lack of disaggregated data reduces 
the model’s statistical power, which is important for identifying statistically significant relationships. 

• Incomplete Control Variables: There may still be unobserved factors that influence maintenance costs 
which we do not control for. These omitted variables, such as specific environmental conditions or regional 
maintenance practices, could bias our estimates if they are correlated with traffic levels. However, we 
include a comprehensive set of control variables to account for infrastructure characteristics and other cost 
drivers. The consistency of our results, even when excluding any particular variable, suggests that we have 
effectively captured a sufficient set of controls. 
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• Limitations of the Log-Log Model: Our main model, the log-log specification, assumes a constant 
elasticity between traffic and maintenance costs, which simplifies the relationship but may not fully capture 
its complexity. In reality, the elasticity may vary with traffic levels, especially when considering different 
types of traffic (e.g., passenger vs. freight). This assumption of constant elasticity may lead to 
overestimated marginal costs if elasticity decreases with increasing traffic. A more flexible model, such as 
the translog model, could address this issue but would require more granular data for accurate estimation. 

These limitations highlight the need for more detailed, disaggregated data and a broader set of control variables to 
improve the reliability of marginal cost estimates in future analyses. Nonetheless, our maintenance results appear 
reasonable and remain robust across various modeling choices, including the consideration of time effects. 

Renewals regression 

Our renewals regression approach is limited by the structure of the dataset, which provides data only at the 
regional level, with observations for 5 regions over a 10-year period. This restricted dataset necessitates a 
substantial departure from our preferred approach, limiting our model selection and analytical scope. Given these 
constraints, we employ a log-log model to estimate the elasticity of traffic with respect to renewals costs. Due to the 
small sample size, we are unable to test more complex models, such as the translog model, which requires a higher 
degree of data granularity for reliable parameter estimation. Furthermore, when we attempt to separate traffic by 
passenger and freight types, we encounter negative or statistically insignificant coefficient estimates, as shown in 
Section 6. This outcome suggests that the models lack sufficient statistical power to produce robust results when 
disaggregating traffic types, underscoring the limitations imposed by the current level of data aggregation. Our 
renewals regression model is shown below.  

ln𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 ln𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑿𝑿𝑖𝑖𝑖𝑖𝛾𝛾 + 𝜕𝜕𝑡𝑡 +  𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

We use real renewals costs to account for the effects of inflation and traffic is measured in train-km. 

Limitations  

Overall, we are not confident in the robustness of renewals regressions at the regional level. Better cost data 
availability at a more granular level is needed to develop a robust econometric model.  

• Limited Degrees of Freedom: Due to the small sample size of our renewals dataset, we face restricted 
degrees of freedom, which limits the complexity of our model specifications. As a result: 

o We can include only a limited number of control variables, specifically track length and track age. 
This narrow set of controls is likely to result in omitted variable bias, as other potentially influential 
factors on renewals costs remain unaccounted for. Including additional control variables in renewals 
regressions very quickly removes useful variation in traffic. This is a multicollinearity issue. As evidence 
for this, when we regress traffic on electrification, track length, and track age (at the region level), we 
get an R-squared of 95%. This means that there is only 5% of the variation in traffic left to explain the 
variation in renewals costs, leading to inaccurate estimates. 

o We are unable to differentiate between passenger and freight traffic in the model. Instead, we rely 
on a combined traffic measure (passenger-km + freight-km) to identify a statistically significant 
relationship with renewals costs. This combined metric may not accurately capture the distinct effects 
of different traffic types on renewals. 

o We are restricted to a simple functional form. Due to data constraints, we cannot employ more 
flexible functional forms, such as the translog model, which might better estimate heterogeneous 
marginal costs by capturing non-linear relationships and interaction effects. 

• Inappropriate Level of Aggregation: The aggregation of data at the regional level poses further 
challenges. Traffic likely affects renewals at a more granular level, such as the track-section level, where 
specific local conditions influence maintenance and renewal needs. By observing renewals costs and traffic 
data at an aggregated regional level, we risk obscuring localized effects, which could dilute or mask the 
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true impact of traffic on renewals costs. Additionally, the aggregated level may introduce spurious 
correlations, as it fails to capture the finer variations that drive renewals at the ground level. 

• Inappropriate Lag Structure: Renewals costs are typically "lumpy" and planned in advance, meaning they 
do not respond immediately to traffic changes. Ideally, we would address this by including lagged traffic 
variables in our model, allowing us to isolate the short-run marginal cost of traffic on renewals. However, 
each lag we include removes 10% of our observations (5 out of 50 total), substantially limiting our already 
small sample and hindering our ability to incorporate lags without further reducing statistical power. 

These limitations underscore the need for a more granular dataset and additional observations to improve the 
robustness and reliability of our renewals cost estimates. The sooner data collection efforts are initiated, the sooner 
the industry can benefit from more accurate insights. However, based on our discussions with Network Rail and 
staff at the GBR Transition Team (GBRTT), we understand that, (a) developing a retrospective sub-regional cost 
allocation method would be a time and resource intensive exercise, and (b) once Network Rail implements a new 
sub-regional accounting framework, several years of data collection will be required to achieve the critical mass 
needed for a robust econometric analysis. 

5.2. CONVERTING TO VUCS 

Marginal costs 

Our econometric models enable us to estimate the elasticity of traffic with respect to costs, which is valuable for 
cross-country comparisons to validate our regression results. However, we need to convert these elasticities into 
marginal costs to calculate variable charges for rail infrastructure. As shown in the mathematical derivation below, 
the marginal cost of traffic can be decomposed into the elasticity of traffic with respect to cost and the average cost. 
Thus, to calculate the marginal cost, we multiply our regression-based elasticity estimates by the average cost per 
train-mile, which we obtain directly from the data. Note that we convert from kilometres to miles to enable a valid 
comparison with other studies and Network Rail’s current price list, which report traffic in miles. 

Price list 

Our analysis arrives at average marginal costs of maintenance for passenger and freight traffic, and an average 
marginal cost of renewals for total traffic. These are the required inputs to Step 2 of the Network Rail’s current VUC 
approach (see Figure 2.1). Hence, we used our inputs (in a slightly modified version of Network Rail’s VUC 
calculation model used for the PR23 Final Determinations11) to arrive at the final price list. To calculate the price list, 
we followed these steps: 

• Convert marginal costs from pence per train-mile to £ per kgtm. We calculate the marginal cost of 
passenger and freight traffic in terms of train-miles, because we only have sufficient data on train-miles and not 
on gross tonne-miles. We use mileage data available in the most recent Network Rail VUC model to convert 

 

11 NR PR23 FD VUC model v2.2.xlsx provided by ORR on 10/10/2024. 

Converting from elasticity to marginal cost 

We calculate marginal costs (𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖) for each unit and time period by multiplying cost elasticities by average costs 
per train-mile. The marginal cost is defined as (without subscripts i and t): 

𝑀𝑀𝑀𝑀 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑞𝑞 × 𝜕𝜕𝜕𝜕
𝐶𝐶 × 𝜕𝜕𝜕𝜕

×
𝐶𝐶
𝑞𝑞

=
𝜕𝜕 𝑙𝑙𝑙𝑙 𝐶𝐶
𝜕𝜕 𝑙𝑙𝑙𝑙 𝑞𝑞

×
𝐶𝐶
𝑞𝑞

= 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

We then calculate a traffic weighted average marginal cost for passenger and freight as follows: 

𝑀𝑀𝑀𝑀𝑊𝑊 = �(
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 × 𝑞𝑞𝑖𝑖𝑖𝑖
∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)
𝑖𝑖𝑖𝑖
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train-miles to thousands of gross tonne-miles (kgtm). For passenger traffic, we calculate that there are 3.6 
train-miles per kgtm; for freight traffic we calculate that there are 1.1 train-miles per kgtm. 

• Apply Network Rail’s efficiency adjustments to CEPA’s marginal costs. In calculating the efficient VUC 
rate, Network Rail assumes that they will experience 7.4% efficiency gains for maintenance costs and 12.6% 
efficiency gains for renewals costs over the CP7 period. Additionally, they apply a further 2% reduction to 
maintenance marginal costs and 5.7% reduction to renewals marginal costs. We apply the same efficiency 
adjustments to our marginal costs, which are estimated over the period 2014-2023. 

• Split step 2 of the VUC model into separate passenger and freight calculation sheets. Step 2 of Network 
Rail’s VUC methodology is outlined in their November 2022 consultation on regulated access charges.12 We 
split this methodology into separate passenger and freight calculation sheets to reflect the fact that we input 
separate passenger and freight marginal costs, instead of a total marginal cost. 

• Calculate the full (uncapped) price list. The final step of our analysis generates the full uncapped VUC price 
list. We present the uncapped price lists for both the current engineering approach (as given in the Network 
Rail VUC model) and our econometric approach to enable like-for-like comparison.13 The capping (and 
phasing) of freight VUC charges was, and remains, a policy decision for ORR and is not reflected in our 
calculations. 

 

12 Network Rail (November 2022) “Consultation on regulated access charges in Control Period 7” available at networkrail.co.uk. 
13 Therefore, readers should note that the CP7 price list shown in Section 6.3 below does not match the one published on 
Network Rail’s website – which presents capped VUC rates. 

https://sacuksprodnrdigital0001.blob.core.windows.net/pr23-access-charges-consultation/Access%20Charges%20Consultation/Network%20Rail%E2%80%99s%20consultation%20on%20regulated%20access%20charges%20in%20Control%20Period%207%20(CP7).pdf
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6. RESULTS 

In this section, we present the results of our econometric analysis of the marginal costs of traffic for maintenance 
and renewals. Our findings shed light on the elasticity of costs with respect to traffic, enhancing our understanding 
of how traffic levels influence infrastructure expenditures. For both maintenance and renewals, we begin by 
summarising the data, exploring historical trends in traffic and costs, and describing the control variables used in 
our regressions. We then present the core results, including regression coefficients, elasticities, and marginal costs. 
To ensure robustness, we compare results across alternative models, including fixed effects and random effects 
estimations, and assess the effects of different control variables. We also discuss the limitations of each model, 
particularly concerning data granularity and aggregation, to contextualise the reliability of our findings. Finally, we 
compare our estimates with benchmarks from other studies, providing insights into the broader relevance of our 
results within infrastructure cost modelling. 

6.1. ANALYSIS OF MAINTENANCE COSTS 

Data summary 

Our maintenance dataset consists of a balanced panel of 35 MDUs observed over a 10-year period (2014-2023), 
yielding a total of 350 observations. The dependent variable is the log of annual maintenance costs (measured in 
constant 2023-24 prices), while the main independent variables of interest are the log of passenger train traffic and 
the log of freight train traffic, both measured in train-km. A set of control variables are also included, which capture 
the physical characteristics of the track each MDU service, though these are not interacted with traffic variables. A 
summary of the dependent and main independent variables is presented in Table 6.1 below, while a summary of 
the control variables is presented in Appendix A. 

Table 6.1: MDU-level cost and traffic data, 2023-24 prices 

Variable Count Mean SD Min Max 

Real maintenance expenditure (£m) 350 35.5 10.6 16.5 67.3 

Passenger traffic (million train-km) 350 14.2 4.3 5.5 25.2 

Freight traffic (million train-km) 350 1.3 0.8 0.1 4.2 

Source: CEPA analysis 

Figure 6.1 below illustrates the evolution of real maintenance expenditure over the last ten years. There is 
significant variation between MDUs (shown in the faint blue lines), with expenditure on maintenance ranging 
between £16.5m and £67.3m per year. There has been a slight increase in variation between MDUs over time, and 
this spread appears to have occurred from 2018-2020, which coincides with the start of CP6. There is less variation 
within MDUs, meaning that year-to-year maintenance expenditure does not shift by large amounts. Average 
maintenance expenditure (illustrated by the dark blue line) has increased slowly across the period, with the largest 
increase occurring between 2018-2020.  
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Figure 6.1: Real maintenance expenditure, MDU, £ millions, 2014-2023 

 

Source: CEPA analysis 

Passenger and freight traffic are illustrated in the figure below. Like maintenance expenditure, there is more 
variation between MDUs than within the same MDU over time. Passenger traffic is roughly 10 times higher than 
freight traffic. There is a significant decrease in passenger traffic for some MDUs from 2019-2020 and traffic 
remains at reduced levels post-2020, largely due to reduced demand stemming from Covid-19. Average freight 
traffic has remained fairly constant across the period, but there is some variation within MDUs, especially from 
2019-2022 as freight traffic also reacts to Covid-19. 

Figure 6.2: Traffic, measured in millions of train-km, for passenger and freight, MDU, 2014-2023 

 

Source: CEPA analysis 

The correlation plot in Figure 6.3 below shows that a range of variables are correlated with maintenance 
expenditure (the bottom row). Passenger and freight traffic are both positively correlated with expenditure, 
passenger more so than freight. Track length, electrification, track weight and the number of switches and signals 
are also positively correlated with maintenance expenditure. Electrification, average cant, and the proportion of 
high-speed track are negatively correlated with maintenance expenditure. Track age is negatively correlated with 
maintenance expenditure and traffic, which indicates that MDUs operating relatively old infrastructure, experience 
less traffic on average, and less maintenance expenditure.  
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Figure 6.3: Correlation plot of maintenance expenditure, traffic, and select controls 

 

Source: CEPA analysis 

The purpose of Figure 6.3. is to demonstrate the various relationships between the variables used in our study and 
note that whilst many of these correlations may appear intuitive (e.g., maintenance expenditure being positively 
correlated with passenger traffic and track length) other relationships may appear unintuitive (e.g., maintenance 
expenditure being negatively correlated with track age – likely because track age is negatively correlated with 
passenger traffic). In that context, it is important to remember that variables which one might ordinarily consider to 
be important drivers of maintenance expenditure – such as those typically associated with track age and complexity 
of infrastructure – may not turn out to be the dominant drivers in our regression results because those variables are 
the result of other factors (such as the ordinary level of traffic or the train speed that the track is designed for). As a 
result, the estimated parameters for some of the control variables may not align with our prior expectations (in 
terms of direction and/or magnitude) but we are confident that collectively our set of control variables perform well 
in controlling for variation in maintenance costs across MDUs which is not explained by differences in traffic. 

Maintenance Results 

Log-log model 

The log-log regression results presented in Table 6.2 show the relationship between maintenance expenditure (log-
transformed) and our two primary explanatory variables: passenger train-km and freight train-km (both also log-
transformed), with models employing both fixed effects and random effects specifications. Four regressions are 
presented, allowing us to compare how the inclusion of controls affects the results.  
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Table 6.2: Log-log regression results, maintenance 

Dependent variable (1)  (2)  (3)  (4)  
Log maintenance expenditure FE  RE  FE  RE  
          
Log passenger train-km 0.292***  0.340***  0.247***  0.264***  
  (0.072)  (0.078)  (0.064)  (0.060)  
Log freight train-km  0.115**  0.098***  0.093  0.095**  
  (0.055)  (0.038)  (0.055)  (0.039)  
Year fixed effects  Yes  Yes  Yes  Yes  
Controls  No  No  Yes  Yes  
Constant  -2.975**  -3.535***  15.022  4.544  
  (1.270)  (1.298)  (72.546)  (17.257)  
          
Observations  350  350  350  350  
Overall R-squared  0.509  0.472  0.572  0.771  

Robust standard errors in parentheses 
  *** p<0.01, ** p<0.05, * p<0.1 

Our estimates of the parameters of interest (𝛽𝛽s) are identified if, after accounting for unobserved MDU 
heterogeneity, time specific events, and our set of control variables, shocks to passenger and freight traffic are 
exogenous. We present results below that illustrate the inclusion of our set of control variables does not significantly 
change the estimated coefficients, which lends evidence to this being the case. 

Across all specifications, both passenger train-km and freight train-km are positively associated with maintenance 
expenditures. In the models without controls (Columns 1 and 2), a 1% increase in passenger train-km is associated 
with approximately a 0.292% increase in maintenance expenditures under the FE model and a 0.340% increase 
under the RE model. The significance of this relationship is consistent, with both coefficients statistically significant 
at the 1% level. The impact of freight train-km, while generally smaller than that of passenger train-km, remains 
statistically significant as well; a 1% increase in freight train-km is associated with a 0.115% increase in 
maintenance expenditures in the FE model and a 0.098% increase in the RE model, both significant at the 5% level. 

When controls are added in Columns 3 and 4, the magnitude of the passenger train-km coefficients slightly 
decreases, suggesting that some of the variation in maintenance costs might be explained by these controls. 
However, the relationship remains positive and significant. Notably, freight train-km become statistically insignificant 
in the FE model with controls, though they retain significance at the 5% level in the RE model. The overall R-
squared values indicate that the models with controls (especially the RE model in Column 4) explain a greater 
proportion of the variance in maintenance expenditures, with R-squared values rising from 0.509 in the initial FE 
model to 0.771 in the RE model with controls.  

Overall, we consider the log-log model with controls using RE as our preferred model. The Hausman test, results of 
which are shown in the appendix, does not reject the null hypothesis, indicating no systematic difference between 
the RE and FE coefficients. This finding supports RE as a consistent estimator. Additionally, the RE model provides 
the best fit for the data, as evidenced by the highest R-squared value among the specifications. 

We estimate that the elasticity of maintenance expenditure with respect to passenger traffic is 26.4%, while freight’s 
elasticity is 9.5%. This is in-line with other econometrics studies, giving us confidence in our results. For example, 
the European-wide CATRIN study (Wheat et. al., 2009) found that the mean elasticity for rail maintenance generally 
ranged from 20% to 35%. These findings demonstrate a robust relationship between traffic and maintenance costs. 

We present the estimated elasticities and marginal costs from Column 4 in Table 6.3 below. As outlined in Section 
5.2, we later convert these marginal costs to consistent units to compare against the current Network Rail VUC 
price list. When adjusting for inflation, our marginal costs appear very similar to those estimated by Wheat and 
Smith (2008), increasing confidence in our results. 
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Table 6.3: Estimated maintenance elasticities and marginal costs, 2023-24 prices 

Maintenance cost,  

log-log model 

Elasticity Marginal cost (pence 
per train-mile) 

Passenger traffic 0.26 105 

Freight traffic 0.09 426 

Source: CEPA analysis 

Translog model 

We present the results of our translog model as an alternative to the log-log model. While data limitations mean that 
the coefficients of the translog model are not always statistically significant, this model provides a more flexible 
approach, enabling us to examine how elasticities vary with traffic levels. Results are presented in Table 6.4 below.  

Table 6.4: Translog regression results, maintenance 

Dependent variable (1)  (2)  (3)  (4)  
Log maintenance expenditure FE  RE  FE  RE  
          
Log passenger train-km 14.321***  12.725***  12.837***  10.555**  
  (4.084)  (4.232)  (4.279)  (4.795)  
Log passenger train-km squared  -0.426***  -0.378***  -0.389***  -0.311**  
  (0.118)  (0.121)  (0.118)  (0.132)  
Log freight train-km  0.979  0.780  0.528  0.784  
  (1.154)  (1.110)  (1.358)  (1.310)  
Log freight train-km squared  -0.026  -0.022  -0.022  -0.020  
  (0.023)  (0.022)  (0.025)  (0.023)  
Log passenger * log freight 
train-km 
  

-0.012  -0.006  0.008  -0.011  
(0.068)  (0.066)  (0.082)  (0.075)  

Year fixed effects Yes Yes Yes Yes 
Controls  No  No  Yes  Yes  
Constant  -122.658***  -108.667***  -113.997  -90.979**  
  (36.326)  (37.609)  (76.178)  (44.285)  
          
Observations  350  350  350  350  
Overall R-squared  0.557  0.444  0.606  0.722  

Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  

In this specification, the impact of passenger train-km on maintenance expenditures is positive and substantial 
across all four columns, with coefficients on the linear term ranging from 10.555 to 14.321. The coefficient on the 
squared term for passenger train-km is negative and statistically significant, with values between -0.311 and -0.426, 
indicating diminishing marginal effects. This suggests that as passenger train-km increase, the incremental increase 
in maintenance expenditures becomes smaller, pointing to possible economies of scale in maintenance costs 
associated with passenger trains. These diminishing returns are consistent across both the FE and RE models, 
underscoring the robust nature of this finding. 

The freight train-km variables, however, show a slightly different pattern. While the coefficients on log freight train-
km are positive, they are not statistically significant in any specification, and the squared terms are also statistically 
insignificant. This lack of significance for freight train-km terms suggests that maintenance costs related to freight 
traffic may not exhibit the same scale effects observed for passenger traffic. The interaction term between 
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passenger and freight train-km is also statistically insignificant across all specifications, indicating that any 
interdependent effect on maintenance costs between passenger and freight activity is likely minimal in this model. 

In terms of model fit, the translog model demonstrates good explanatory power, with R-squared values ranging 
from 0.444 to 0.722 across specifications. When controls are added (Columns 3 and 4), the RE model achieves the 
highest R-squared at 0.722, suggesting that the inclusion of additional variables enhances the model’s ability to 
explain variation in maintenance expenditures. This model fit is very similar to the log-log specification, where R-
squared values were slightly lower (0.472 to 0.771). 

We plot the relationship between estimated marginal costs and traffic in Figure 6.4 and Figure 6.5 below. We do not 
see any observable difference in the relationship between marginal costs and traffic for pre-Covid (blue) and post-
Covid (green) observations. The red line shows the fitted values of the relationship. It shows that the marginal costs 
are not constant with respect to passenger or freight traffic. Instead, the relationship is downwards sloping and non-
linear, with higher traffic MDUs having lower marginal costs than lower traffic MDUs. This means that the log-log 
model may overestimate the marginal cost by assuming a constant elasticity as it underweights high traffic MDUs. It 
is important to note that these curves are based on imprecisely estimated coefficients. The standard errors of these 
coefficients are shown in Table 6.4. We present the weighted average elasticities and marginal costs from Column 
4 in Table 6.5 below. 

Table 6.5: Estimated maintenance elasticities and marginal costs, 2023-24 prices 

Maintenance cost,  

translog model 

Elasticity (weighted 
mean) 

Marginal cost (pence 
per train-mile) 

Passenger traffic 0.19 59 

Freight traffic 0.05 231 

Source: CEPA analysis 

Estimates from the translog model are lower than those from the log-log model, indicating that non-linearities play 
an important role. Failing to account for these non-linearities may result in an overestimation of marginal costs. 

In summary, the log-log model offers straightforward elasticity estimates with high consistency and ease of 
interpretation, making it a practical choice for estimating the direct elasticities of maintenance costs with respect to 
train-km. However, the translog model provides a more nuanced view of scale effects, particularly for passenger 
train-km, though this flexibility comes with increased complexity and some parameter imprecision, reflected in 
larger standard errors. This trade-off suggests that the choice of model should align with the research priority: if the 
goal is interpretive simplicity and stable elasticity estimates, the log-log model is preferable; if a more detailed 
representation of non-linear effects and scale economies is desired, the translog model may be more appropriate. 
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Figure 6.4: Passenger marginal costs by traffic 

 

Figure 6.5: Freight marginal costs by traffic 

 

Source: CEPA analysis 
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Sensitivities and limitations  

Our primary concern when running the maintenance regression model was the inclusion of year fixed effects. 
Excluding these effects resulted in spurious relationships between traffic and maintenance expenditure, indicating 
that our results lack robustness without year fixed effects. This finding is expected, as including year fixed effects in 
panel regressions is a standard method to control for time-specific shocks that would uniformly affect maintenance 
costs across all MDUs, such as the Covid-19 pandemic. 

However, applying year fixed effects without consideration has potential drawbacks: it can absorb meaningful 
variation that might otherwise highlight trends or effects specific to certain periods, and it may obscure the impact 
of critical events that uniquely influence only certain years or periods, such as a pandemic or regulatory 
adjustments. In this context, substituting year fixed effects with targeted temporal dummies (e.g., a Covid dummy, a 
regulatory cycle dummy, or a time trend) can more precisely capture relevant time-specific effects and potentially 
enhance the model’s interpretability. The ORR also uses a Covid dummy in its cost benchmarking publications, 
which supports the need to address the altered relationship between costs and traffic caused by Covid. 

The full results of our time effects sensitivity analysis are presented in Appendix A. We estimate three alternative 
models to compare with Column 4 from Table 6.2. The first model includes a Covid dummy for 2020-2023, the 
second includes a CP7 dummy for 2019-2023, and the final model incorporates a linear time trend. Across these 
specifications, key parameter estimates remain largely stable, while the R-squared decreases in each case. This 
suggests that year fixed effects provide the best fit for capturing annual variations in maintenance expenditures. 

6.2. ANALYSIS OF RENEWALS COSTS 

Data summary 

The dataset consists of a balance panel of 5 regions observed over a 10-year period (2014-2023), yielding a total of 
50 observations. Given the high level of aggregation, we did not face the issue of observing many observations of 
zero renewals. Every region had conducted some level of renewals each year, so renewals costs were always 
positive. For this reason, we did not separately estimate the probability of renewals and the cost of renewals. 
Instead, we estimated a log-log model. The dependent variable is the log of annual renewal costs (measured in 
constant 2023-24 prices), while the main independent variables of interest are the log of passenger train traffic and 
the log of freight train traffic, both measured in train-km. As robustness checks, we included the first lags of these 
variables, and also considered a model where the main independent variable was the log of total train traffic. A 
small set of controls were also included, specifically the log of average track age and log track length. Average 
track age should capture the probability of renewals while track length should covary with the total amount of 
renewals occurring. Further controls were not included due to degrees of freedom concerns.14 A summary of the 
variables used in this regression is presented in Table 6.6 below. 

Table 6.6: Region-level summary statistics, 2023-24 prices 

Variable Count Mean SD Min Max 

Real renewals expenditure (£m) 50 750 249 331 1,263 

Passenger traffic (million train-km) 50 99.4 36.6 45.6 174.1 

Freight traffic (million train-km) 50 8.8 5.2 2.5 18.1 

Track length (km) 50 6151 1859 4240 9717 

Average track age (years) 50 27.1 3.5 22.1 34.8 

Source: CEPA analysis 

 

14 The slow changing nature (over time) of average track age and track length, and to a lesser extent traffic, meant that the 
variation between regions was almost perfectly explained if additional controls were included, which is suggestive of overfitting. 
More details are discussed in the methodology section of our report. 
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Figure 6.6 below illustrates the evolution of real renewals expenditure over the last ten years. There is significant 
variation between regions (shown in the faint blue lines), with expenditure on renewals ranging between £330m and 
£1,260m. The variation between regional expenditure on renewals has not changed significantly over time. There is 
less variation within regions, meaning that year-to-year renewals expenditure does not shift by large amounts. 
Average renewals expenditure (illustrated by the dark blue line) increased by £150m from 2014 to 2022, before 
falling almost back to 2014 levels in 2023. 

Figure 6.6: Real renewals expenditure, regions, £ millions, 2014-2023 

 

Source: CEPA analysis 

Figure 6.7 below illustrates variation in passenger and freight traffic between and within regions over the study 
period. Apart from the Covid-19 related traffic shock, occurring 2020, there is very little variation within regional 
passenger traffic. There is also very little variation with regional freight traffic. Variation does exist between regions 
but this is primarily driven by the size of the relevant networks. 

Figure 6.7: Traffic, measured in millions of train-km, for passenger and freight, regions, 2014-2023 

 

Source: CEPA analysis 

The correlation plot (shown in Figure 6.8 below) shows very strong positive correlation between renewals, 
passenger traffic, freight traffic and track length. This will cause issues when running our regression, as in practice 
it is challenging to disentangle the effect of explanatory variables that are highly correlated. In this case, once the 
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effect of track length is accounted for, there is very little residual variation in traffic and renewals expenditure to 
estimate the elasticity of renewals expenditure with respect to passenger and freight traffic.  

The negative correlation between track age and renewals, traffic, and track length can be attributed to regions with 
lower traffic volumes, such as Scotland and Wales. 

Figure 6.8: Correlation plot of renewals expenditure, traffic, and controls 

 
Source: CEPA analysis 

Renewals Results 

Log-log model 

Due to the small number of regional observations available, we only estimated a log-log model for renewals 
expenditure. The results presented in Table 6.7 below show the relationship between renewals expenditure (log 
transformed) and various traffic measures. Two specifications (Columns 1 and 2) separate passenger and freight 
train-km as individual predictors, while Columns 3 and 4 aggregate them into a single total train-km variable. Each 
specification is estimated using both FE and RE models to compare the robustness of the results. 

Table 6-1: Log-log regression results, renewals 

Dependent variables (1) (2) (3) (4) 

Log renewals expenditure FE RE FE RE 
     

Log passenger train-km 0.241 0.507*   
 (0.218) (0.264)   
Log freight train-km -0.259 -0.374**   
 (0.267) (0.174)   
Log total train-km   0.091 0.592** 
   (0.271) (0.248) 
Year fixed effects Yes Yes Yes Yes 
Controls Yes Yes Yes Yes 
Constant -4.055 -1.267 -3.942 -6.607*** 
 (5.703) (5.938) (5.381) (1.831) 
     
Observations 50 50 50 50 
Overall R-squared 0.722 0.917 0.683 0.873 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1  
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In Columns 1 and 2, passenger train-km show a positive relationship with renewals expenditure across both FE and 
RE models. While the effect is statistically insignificant in the FE model (coefficient: 0.241), it becomes marginally 
significant in the RE model (coefficient: 0.507, p < 0.1). For freight train-km, results indicate a negative relationship 
with renewals expenditure. In the FE model (Column 1), the coefficient is negative (-0.259) but not statistically 
significant. However, in the RE model (Column 2), the effect is both larger in magnitude (-0.374) and statistically 
significant at the 5% level. In terms of model fit, the random effects model demonstrates very good model fit with an 
R-squared of 0.917. 

The difference between results for the FE and RE models (both in terms of magnitude and significance of estimates) 
suggests that there exists cross-sectional variation that influences renewals expenditure but is averaged out in the 
FE specification. For example, track length varies only slowly over time (as does traffic and track age), so once 
region fixed effects are included, there is very little meaningful variation left to estimate the effect of these variables 
on renewals. 

One option to try and improve our model fit was to aggregate passenger and freight traffic, which is highly colinear 
at the region level. When aggregating passenger and freight train-km into a single variable (Columns 3 and 4), total 
train-km exhibit a significant positive effect on renewals expenditure in the RE model (coefficient: 0.592, p < 0.05), 
while the effect remains statistically insignificant in the FE model (coefficient: 0.091). This finding supports the 
interpretation that higher levels of overall traffic are associated with increased renewals expenditure, but the large 
difference between the RE and FE parameter estimates raises concerns about the robustness of these results. As 
expected, the R-squared values for these models are slightly lower than the models with traffic disaggregated by 
type. This is because the elasticity of renewals costs with respect to traffic is constrained to be the same for both 
freight and passenger traffic in these models. These findings highlight the importance of model selection and 
specification when assessing the drivers of infrastructure renewals expenditure.  

Given the estimated parameters in Column 2 do not make sense economically, i.e., renewals expenditure should 
increase not decrease with freight traffic at the margin, we report an elasticity and marginal cost calculated for all 
traffic using the results in Column 4. It should be noted, and we emphasise, that there are serious limitations to this 
estimate, mainly generated by data limitations. However, we report it in Table 6.8 for completeness. 

Table 6.8: Estimated renewals elasticities and marginal costs, 2023-24 prices 

Maintenance cost,  

log-log model 

Elasticity Marginal cost (pence 
per train-mile) 

Total traffic 0.59 659 

Source: CEPA analysis 

Sensitivities and limitations  

A key limitation of our analysis was the relatively small sample size, as consistent data on renewals expenditure 
over the timeframe of our analysis is only available at the regional level (of which there are 5 regions). Given the low 
variation within each region for renewals expenditure, traffic, and control variables, this limited sample introduced 
significant collinearity between traffic measures and controls, which affected the accuracy of our parameter 
estimates. We explored various combinations of controls, including electrification, track length, and track age. 
Across these specifications, passenger traffic generally had a positive effect on renewals expenditure, while freight 
traffic had a negative effect. However, the magnitude and statistical significance of these estimates were sensitive to 
the specific controls included in the model, which is expected given the high collinearity between explanatory 
variables and controls. Key sensitivity tests are summarised in Appendix A. 

Additionally, we investigated the inclusion of lagged traffic variables to account for the fact that renewals costs are 
often scheduled in advance and may be “lumpy”. By incorporating lags, we aimed to isolate the contemporaneous 
impact of traffic on renewals, representing the short-run marginal cost. However, incorporating lags reduced our 
sample size by 10% (5 out of 50 observations per lag), limiting the ability to include multiple lags in the models. The 
models that incorporate lagged passenger and freight traffic are presented in Appendix A4. Lagged and current 
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traffic are highly correlated and the inclusion of lags does not alter the sign of traffic elasticities but reduces their 
magnitude as the effect is distributed across two years. Notably, the estimated coefficients in these lagged models 
are statistically insignificant. 

6.3. RESULTING VARIABLE USAGE CHARGE PRICE LIST 

We converted the marginal costs estimated using the maintenance and renewals regressions into Network Rail’s 
VUC price list using the procedure outlined in Section 5.2 above. The first step was converting our pence/train-mile 
marginal costs to a £/kgtm measure. As presented in Table 6.9 below, our resulting marginal costs are considerably 
lower for passenger traffic and higher for freight traffic (whilst noting that we cannot be confident in the robustness 
of our renewals regressions as described in Section 6.2 above). This makes sense as the Network Rail marginal 
costs are a weighted average of passenger and freight traffic. 

Table 6.9: Summary of marginal costs used in VUC model, pre-efficiency and adjustments, 2023-24 prices 

£/kgtm Log-log Log-log Translog Translog Network Rail 

Traffic Passenger Freight Passenger Freight Total 

Maintenance 0.29 3.89 0.16 2.11 1.45 

Renewals 2.18 2.18 2.18 2.18 2.61 

Total 2.48 6.08 2.35 4.30 4.06 

Source: CEPA analysis 

We then apply Network Rail’s efficiency and cost adjustments to arrive at Table 6.10 below. These are the input 
marginal costs to Step 2 of the VUC model. 

Table 6.10: Summary of marginal costs used in VUC model, post efficiency and adjustments, 2023-24 prices 

£/kgtm Log-log Log-log Translog Translog Network Rail 

Traffic Passenger Freight Passenger Freight Total 

Maintenance 0.26 3.53 0.15 1.92 1.32 

Renewals 1.80 1.80 1.80 1.80 2.15 

Total 2.06 5.33 1.95 3.72 3.47 

Source: CEPA analysis 

Following Network Rail’s calculation of total variable usage charge using traffic multiplied by the above marginal 
costs, and allocation of the total VUC based on vehicle damage characteristics, we derive a full VUC price list. We 
present the “default”15 passenger and freight variable usage charges, as well as simple averages over the list of 
vehicles in Tables 6.11–6.14 below. For the freight comparisons in Tables 6.12 and 6.14 we use Network Rail’s 
‘uncapped’ CP7 VUC rates as these represent a more ‘like for like’ comparison, because following ORR’s PR23 final 
determination, freight VUC rates are capped below fully cost-reflective rates on the trajectory set at PR18.16  

  

 

15 Default charges are the max variable usage charge for each broad vehicle type. 
16 ORR (October 2023) “PR23 final determination: policy position – access charges” p.10., available at orr.gov.uk. 

https://www.orr.gov.uk/sites/default/files/2023-10/19-pr23-final-determination-policy-position-access-charges.pdf


 

39 

Table 6.11: Default passenger variable usage charges, 2023-24 prices 

Default rate 

Vehicle Classification 

CEPA Log-log 

(Pence Per Vehicle Mile) 

CEPA Translog 

(Pence Per Vehicle Mile) 

Network Rail CP7 

(Pence Per Vehicle Mile) 

Locomotive 76.86 72.60 127.05 

Multiple unit (motor) 35.34 33.38 60.44 

Multiple unit (trailer) 16.54 15.62 28.23 

Coach 14.08 13.30 23.45 

Source: CEPA analysis and NR PR23 FD VUC Model v2.2 

Table 6.12: Default freight variable usage charges, 2023-24 prices (uncapped CP7 rates)   

Default rate 

Vehicle Classification 

CEPA Log-log 

(£/kgtm) 

CEPA Translog 

(£/kgtm) 

Network Rail CP7 

Uncapped 

(£/kgtm)  

 

Locomotive 21.00 14.63 12.73  

Wagon (laden) 13.71 9.55 8.37  

Wagon (tare) 8.72 6.07 5.62  

Source: CEPA analysis and NR PR23 FD VUC Model v2.2 

Table 6.13: Average passenger variable usage charge, 2023-24 prices 

Average rate 

Vehicle Classification 

CEPA Log-log 

(Pence Per Vehicle Mile) 

CEPA Translog 

(Pence Per Vehicle Mile) 

Network Rail CP7 

(Pence Per Vehicle Mile) 

Locomotive 57.66 54.47 99.19 

Multiple unit (motor) 7.75 7.32 15.19 

Multiple unit (trailer) 9.67 9.13 11.70 

Coach 9.23 8.72 15.06 

Source: CEPA analysis and NR PR23 FD VUC Model v2.2 

Table 6.14: Average freight variable usage charge, 2023-24 prices 

Average rate 

Vehicle Classification 

CEPA Log-log 

(£/kgtm) 

CEPA Translog 

(£/kgtm) 

Network Rail CP7 

Uncapped 

(£/kgtm)  

 

Locomotive 12.29 8.56 7.53  

Wagon (laden) 6.73 4.69 4.55  

Wagon (tare) 2.79 1.94 1.76  

Source: CEPA analysis and NR PR23 FD VUC Model v2.2 

In Table 6.11, we observe that default passenger rates are lower under the econometric approach developed in this 
study compared to the current engineering-based approach. For instance, under the log-log model, locomotives 
are charged at 76.86 pence per vehicle-mile, compared to 127.05 pence per vehicle-mile under the current 
methodology. A similar difference in magnitude is seen for the average passenger variable usage charges, as 
shown in Table 6.13. Passenger variable charges estimated from the translog model, which accounts for non-linear 
cost elasticities but is less robust, are slightly lower in magnitude than those from the log-log model. 
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On the other hand, in Table 6.12, we observe that default freight rates are higher under the econometric approach 
developed in this study compared to the current engineering-based approach. For instance, under the log-log 
model, wagons (laden) are charged 13.71 £/kgtm, compared to 8.37 £/kgtm under the current methodology using 
uncapped prices. A similar difference in magnitude is seen for the average freight variable usage charges, as 
shown in Table 6.14. Freight variable charges estimated from the translog model are far lower than those estimated 
from the log-log model and are marginally higher than the charges estimated under the current methodology. For 
example, the average charge for a tare wagon under the log-log model is more than 50% higher than Network Rail’s 
current charge of 1.76 £/kgtm but is only marginally higher at 1.94 £/kgtm from the translog model. 

The differences in variable charges between the two approaches should not be interpreted as an indicator of which 
method is superior, particularly as these charges incorporate results from our renewals regressions, which lack 
robustness. In particular, we do not think it is possible to conclude – on the basis of this analysis alone – that freight 
charges would be higher under an econometric approach, given that the translog model produces freight charges 
which are broadly similar to the current ‘uncapped’ rates. Further analysis on a more granular renewals expenditure 
dataset would produce different results which might be more robust and support a different conclusion. 

We have greater confidence in the maintenance cost results, where data and model fit are stronger. Ensuring like-
for-like comparisons is essential, and we validate our maintenance findings by referencing established estimates in 
the literature. Notably, our elasticity estimates align with the European-wide CATRIN study, falling within a similar 
range. As an additional validity check, in Table 6.15 below we compare our maintenance marginal cost estimates 
against those provided by Wheat and Smith (2008), which serve as a reliable benchmark. We scale our marginal 
cost estimates using publicly available data from ORR (2024), converting from pence/train-mile to pence/vehicle-
mile for passenger traffic and to £/kgtm for freight traffic. We adjust Wheat and Smith’s estimate to 2023-24 prices 
using the CPI index. 

Table 6.15: Maintenance marginal cost comparison, 2023-24 prices 

 Maintenance – 
marginal cost 

Metric CEPA (Log-log) CEPA (Translog) Wheat & Smith (2008) 

Passenger Traffic pence/vehicle-mile 17.31 9.81 8.39 

Freight Traffic £/kgtm 3.68 2.00 1.99 

Source: CEPA analysis 

Our estimated marginal costs for maintenance using the translog model are closely aligned with those of Wheat and 
Smith (2008), after adjusting for inflation, suggesting that an econometric approach may be feasible once data 
limitations are addressed. Specifically, we estimate the marginal cost of passenger traffic at 9.81 pence per vehicle-
mile, compared to 8.39 pence per vehicle-mile reported by Wheat and Smith (2008). For freight traffic, we estimate 
a marginal cost of £2.00 per kgtm, closely matching the £1.99 per kgtm from Wheat and Smith (2008). The log-log 
model, by contrast, produces higher marginal cost estimates for maintenance due to an overestimation of the 
elasticity. This overestimation occurs because the log-log model assumes a constant elasticity, which tends to 
underweight high-traffic observations, thereby inflating the marginal cost. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

In this section, we evaluate our study results to draw conclusions about the potential role of econometrics in setting 
VUCs at future periodic reviews. In particular, we ask the following questions: 

• Do the econometric and engineering methods produce fundamentally different results? 

• Would an econometric method fundamentally improve the practicability, robustness, and transparency of 
the methodology for setting VUCs; and 

• Would the econometric method have implications for other desirable properties of track access charges, 
such as incentives for economic efficiency, predictability of charges, and recovery of Network Rail’s 
sustainable revenue requirement.17 

Based on the findings and conclusions reached in this study, we then set out our recommendations for ORR and 
Network Rail on how to further improve the econometric approach ahead of future periodic reviews. 

7.1. DO THE ECONOMETRIC AND ENGINEERING METHODS PRODUCE FUNDAMENTALLY 

DIFFERENT RESULTS? 

A ‘like-for-like’ comparison between the econometric and engineering methods is challenging as they are different 
in important respects. For example, one factor that may contribute to observed differences in rates is the definition 
of ‘direct costs’ used in the engineering cost model, which focuses on track, civils and signalling assets. By 
comparison, the econometric literature (and the approach we take in this study) typically focuses on total 
maintenance and renewals costs.  

Table 6.13 (average passenger variable usage charge) and Table 6.14 (average freight variable usage charge) 
above show that there are differences in the reported charges for passenger and freight. But although they are two 
fundamentally different approaches to estimating variable costs, our results show that they can produce overall 
variable cost estimates of a similar scale. An indicative comparison of the overall variable cost estimate which VUCs 
are intended to recover shows that the econometric method would recover a similar (albeit lower) scale of costs: 

• The uncapped passenger and freight VUCs as per the engineering cost models would recover £366m per 
year based on 2021-22 traffic; and 

• The estimated VUCs as per our preferred econometric models would recover £161m per year from 
passenger charges and £132m per year from freight charges, or £293m per year in total. 

We caveat these indicative estimates because we have much more confidence in the robustness of the 
maintenance elasticities compared to the renewals elasticities, and we have more confidence in the robustness of 
the passenger translog results compared to the freight translog results.  

The robustness of our maintenance results might raise questions about whether the assets excluded from the 
engineering approach enhance or limit its ability to fully capture the costs of maintaining and renewing the network 
in response to marginal changes in traffic, and this is an issue that ORR and Network Rail may wish to explore in 
any follow-up work. The engineering approach is consistent with Network Rail’s understanding of the relevant 
legislation, and it might (in theory) provide a better estimate of marginal costs if excluded asset categories are only 
minimally affected by changes in traffic. It might be that the econometric method is picking up some ‘synergy’ in 
maintenance work, in that Network Rail plans maintenance inspections and activities to deliver outputs efficiently 

 

17 Other desirable properties of access charges include fairness and non-discrimination. Since this primarily relates to how the 
method is applied with respect to particular operators / customers (rather than the method itself), we do not comment on these 
properties except to note it would seem fair to address the mechanistic link between passenger traffic volumes and freight 
variable charges which is a feature of the current method. It would not be ‘fair’ for freight customers to pay increased variable 
charges when they are causing similar levels of damage to the network, simply because passenger traffic has fallen. 
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rather than delineating maintenance schedules according to whether they are ‘wear and tear’ or cyclical jobs. On 
the other hand, where the econometric method considers all maintenance and renewals costs (irrespective of 
whether they are considered ‘direct’) it may be revealing elasticity factors which are incorrectly omitted under the 
engineering approach. 

7.2. PRACTICABILITY, ROBUSTNESS AND TRANSPARENCY OF METHOD 

The ORR asked us to assess the merits of the econometric approach in terms of the practicability, robustness and 
transparency of method relative to the current engineering cost model. Our assessment is set out in turn below. 

Practicability 

The engineering cost model – of which VTISM is a central component – is self-evidently practicable in that it has 
formed the basis of VUC setting in previous periodic reviews and the method is broadly accepted by both Network 
Rail and ORR. The appropriateness of the VTISM model has been reviewed previously on ORR’s behalf.18 The only 
minor concern that we observe about the engineering cost model is that its operation is relatively limited to Network 
Rail given that VTISM is primarily concerned with forming an engineering assessment of the long-term maintenance 
and renewals requirement to maintain track condition, performance and safety standards.  

By contrast, we find that there is potential for the econometric method to be a practicable means for setting VUCs 
in future. But the data – specifically the absence of consistent renewals expenditure over the timeframe of our study 
at a sub-regional or route section level – does not support a practicable method for setting VUCs at present, except 
as a ‘cross-check’ and challenge of the engineering model. 

Once the necessary data is available, the econometric method would be more ‘accessible’ in that it could be 
practicably operated and improved by both ORR and Network Rail. It requires some expertise in econometrics and 
input from staff with an understanding of the potential infrastructure related factors which affect variable costs, but it 
requires less specialist knowledge and could therefore be operated by ORR if desired. Aside from a more 
geographically granular view of renewals expenditure, we note that much of the data required for this analysis is 
either already used by ORR or is already produced by Network Rail for its own internal purposes. 

Robustness 

Our scope did not include a review of the robustness of the engineering cost model. However, we observe that the 
robustness of the current engineering-based approach has been challenged by the impact of the Covid-19 
pandemic on passenger traffic and the mechanistic way that VUCs are calculated in the current VUC model. It 
results in an increase in VUC rates for freight traffic in CP7 which does not reflect changes in the damage that those 
operators cause to the network. In other words, although the approach ensures ex-ante that Network Rail recovers 
its estimated variable costs over CP7, the VUC methodology is not entirely robust to outlier events. 

Therefore, a key aim of our study was to explore whether the econometric method could robustly estimate variable 
costs for passenger and freight traffic separately.19 Our analysis shows that econometric models can provide robust 
estimates for maintenance costs, particularly for passenger traffic, but there are more significant concerns for 
renewals costs. 

Maintenance Costs. For passenger-related maintenance costs, the econometric models produce statistically 
significant coefficients that remain consistent across different model specifications. In particular, both the sign and 
magnitude of these coefficients are plausible when using a log-log model, aligning with intuition and comparable 

 

18 Arup (June 2018) “Review of Network Rail’s CP6 Variable Usage Charge assessment” available at orr.gov.uk. 
19 In finalising our report, Network Rail told us that the engineering approach could be adjusted to calculate separate variable 
costs for passenger and freight traffic, but the current approach to calculating VUC rates does not incorporate this step. We 
recommend that the feasibility of this change be explored. 

https://sacuksprodnrdigital0001.blob.core.windows.net/periodic-review-18/Network%20Rail%20recalibration%20of%20Track%20Access%20Charges%20and%20Station%20Charges/Variable/Arup%20Review%20of%20Network%20Rails%20CP6%20Variable%20Usage%20Charge%20Assessment%20(July%202018).pdf


 

43 

econometric studies. Furthermore, the results from the translog model, which demonstrates statistically significant 
and robust results, help address potential non-linearity concerns in the data. 

However, achieving precise translog estimates for freight is challenging, which limits our confidence in the model’s 
ability to represent non-linear relationships accurately. The coefficients’ signs and magnitudes for freight suggest 
that relying solely on the log-log model could produce misleading results. Additionally, freight traffic appears less 
sensitive to recent variables, such as the Covid-19 dummy, likely due to a partial usage pattern on certain track 
sections. Although our primary goal is to evaluate variable costs rather than maximizing explanatory power, the 
relatively high R-squared gives us confidence that omitted variables do not introduce disproportionate bias. 
Notably, however, the robustness of the model for maintenance relies on including year-fixed effects or the Covid-
19 dummy, which are variables not easily accounted for in all cases. 

Renewals Costs. For renewals, the econometric approach is currently limited by sample size and the restricted 
degrees of freedom available to identify distinct impacts. Despite achieving high R-squared values, which could be 
misleading in this context, the lack of sufficient variation limits the model's ability to capture the nuances of renewals 
accurately. The current model only provides results for combined traffic, and although significant and plausible 
coefficients suggest further analysis could be worthwhile, the inability to separate passenger and freight effects is a 
notable drawback—especially given that the maintenance models and preliminary results indicate potentially 
important differences between these categories. 

Although we are reasonably confident in the robustness of our results, we note that there are inherent data 
challenges with any econometric approach which might bias the results. 

First, the dependent variable is based on "as-spent" costs rather than an exogenously determined renewals 
requirement. This could introduce bias if, historically, Network Rail had not spent sufficiently on renewals to 
maintain the required safety and performance standards. Given that Network Rail’s business plans are assessed by 
ORR and the periodic reviews determine the efficient funding needed to operate, maintain and renew the network, 
we consider that it is reasonable to assume that this bias is not a material concern in our study. However, ORR 
should consider this factor in future updates to this analysis, as it paid particular attention to a planned reduction in 
renewals activity in Network Rail’s CP7 SBP. Although it is expected that the average age of Network Rail’s assets 
will increase as a result, ORR concluded that this increase was within acceptable bounds and that Network Rail 
would be able to maintain consistent network performance over CP7.20 

Second, the analysis focuses on long-lived infrastructure assets across a relatively short time horizon (10 years). 
Whilst this ensures the relationships between costs, traffic and other infrastructure factors reflect recent conditions, 
it means the analysis may not fully capture the relevant trends and cycles in maintenance and renewals to the same 
extent as the assumptions in the VTISM model. This is one of the reasons why the econometrics would require a 
more sophisticated and geographically granular approach to regressing renewals expenditure against traffic. 

Third, the econometrics demonstrates correlations between costs, traffic and other control variables (such as 
differences in infrastructure characteristics) but this does not necessarily imply causation, whereas causation is 
more evidentially demonstrated in the track deterioration evidence which informs the VTISM model. One potential 
risk with the econometric approach is that it is influenced by background growth in both traffic and expenditure 
variables, although the robustness of our maintenance results suggest that this risk is small. 

Overall, we conclude that the econometric approach is robust with respect to maintenance costs and we take 
confidence from the fact that (including the renewals estimates) our study estimates a similar level of variable 
costs as that which is produced by the engineering cost models. But the renewals results are much less robust at 
present, particularly in relation to reporting separate elasticities for passenger and freight operators. 

 

20 ORR (October 2023) “PR23 final determination: sustainable and efficient costs”, p.70., available at orr.gov.uk. 

https://www.orr.gov.uk/sites/default/files/2023-12/15-pr23-final-determination-supporting-document-costs.pdf
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Transparency 

A transparent method is one where it is reasonably straightforward to understand what drives changes in VUCs. 
One of the main criticisms levelled at the engineering cost model at present is that it lacks transparency given the 
many underlying engineering assumptions and the application of forward-looking overlays to fit with real world 
budget constraints. In discussions with us around the context to this study, ORR observed that at PR23 there were 
late-stage adjustments to the VTISM model which led to material changes in VUCs from CP6 to CP7. ORR noted in 
the PR23 final determinations that the large number of input variables to the VTISM model and the complex 
mechanism through which they interact with one another during and between control periods works against 
apportioning the drivers of the increase between freight and passenger in a precise manner and can lead to 
material changes in VUCs.21 

Therefore, one of the key benefits of the econometric approach is that it would be a more transparent approach 
which is less subject to changes in the supporting assumptions. Unless these assumptions are well founded, there 
is a risk that they influence the resulting VUCs such that they are inconsistent with the empirical evidence on how 
maintenance and renewals expenditure react to marginal changes in traffic. For example, we envisage that ORR or 
Network Rail could publish the econometric models and the associated dataset, and external parties would be able 
to reproduce its results and subject them to critique and challenge. However, we also recognise that interpreting 
the results of econometric analysis brings its own challenges, in that there can be many relationships in the data 
and when the models produce unintuitive results, it can be challenging to isolate which relationships are likely 
responsible for those results and why. Moreover, the econometric approach also involves important decisions about 
methodology (many of which we have explored in this paper) which make certain assumptions about the underlying 
data. 

7.3. OTHER CONSIDERATIONS RELEVANT TO SETTING ACCESS CHARGES 

As part of any reform to the way that variable charges are determined, ORR will also need to consider whether 
changes to the methodology would impact on the other desirable properties of track access charges. For example: 

• Access charges should incentivise efficient use of a scarce resource: access to the track infrastructure. 
Charges should ensure that operators run services only when the benefits of that service exceed the costs 
of providing it, and that each access slot is allocated to the most valuable use. 

• Access charges should be reasonably predictable, to enable operators to plan services in advance and 
provide reasonable certainty on which they can invest in their rolling stock fleet and other key resources. 
This is particularly important for freight and open access operators. 

• Access charges are a form of Network Rail income and should be sufficient (and sufficiently predictable 
given the nature of Network Rail’s financial architecture) for the infrastructure manager to fund its efficient 
variable costs over a reasonable period. 

We set out some considerations on each of these properties below. 

Cost reflectivity and economic efficiency. At a high level, the engineering and the econometrics approach the 
same issue – the impact of additional traffic on the costs of maintaining and renewing the rail network – from 
different perspectives. As we explain in Section 2.3 above, both methods have their theoretical advantages and 
disadvantages. The main advantages of the econometric method are that it provides empirical evidence on the 
actual variability of Network Rail’s costs with respect to traffic, and it allows the data to speak independently of any 
engineering assumptions or financial scenario constraints which might conceal the full costs.  

 

21 ORR (October 2023) “PR23 final determination: policy position – access charges” p.36., available at orr.gov.uk 

https://www.orr.gov.uk/sites/default/files/2023-10/19-pr23-final-determination-policy-position-access-charges.pdf
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In the context of the results reported in this study, we lack sufficient evidence to conclude that the econometric 
approach would improve the cost reflectivity of variable charges at present, although we see potential for further 
analysis which may produce more robust and valuable evidence on this issue. 

Predictability of charges. Variable charges should be reasonably predictable in advance because they form a 
material component of the operating cost base for train operators. Most passenger operators now operate under a 
form of ‘gross cost contract’ (sometimes referred to as a “concession”) structure with the Department for Transport 
(DfT), where they are not financially exposed to changes in access charging arrangements. But changes in variable 
charges are a concern for open access operators and freight operators who operate on a purely commercial basis, 
because they have a material impact on their operating cost base. 

If variable charges became less predictable over time, open access and freight operators would have to manage 
their operating costs accordingly, even if demand for their services was relatively stable. Arguably, this would be a 
negative development, since industry and government share an ambition to decarbonise the transport sector by 
encouraging modal shift from road to rail, and because open access operators can play an important ‘competitive’ 
role in offering greater choice for passengers. In our view, the access charging framework needs to provide a fair 
and stable basis on which these more commercial operators can plan, manage and invest in their services. 

Neither the engineering approach nor the econometric approach is clearly superior in this regard. Provided that the 
methodology remains relatively stable over time and the underlying evidence base evolves only gradually, both 
approaches ought to produce results which are reasonably predictable in advance. However, the issues 
encountered with the engineering approach at CP7 illustrate how extreme events such as the Covid-19 pandemic 
can impact the results in unpredictable ways. In our view, the main lessons from this experience is that there is an 
inherent risk of obtaining odd results when operating any model-based approach in a mechanistic fashion. One of 
the advantages of using the econometric evidence is that it could provide additional evidence for ORR to apply a 
reasonable amount of regulatory judgement in where to set VUCs when external circumstances undermine the 
stability of the engineering cost model. 

Funding Network Rail’s revenue requirements. Access charges are a form of income for Network Rail and VUCs 
are calibrated to enable Network Rail to recover its variable costs over a 5-year period. The variability of Network 
Rail’s total income matters because it has a large and complex capital investment programme to deliver each 
control period. Efficient delivery of that programme requires it to plan that investment in advance and work closely 
with its supply chain partners to provide reasonable predictability of when that investment will occur. If Network 
Rail’s in-year income falls, it may be required to cancel or defer certain works until later in the control period or the 
next control period, and this can be inefficient when done at short notice. Although Network Rail has some 
flexibilities within its financial architecture to ‘smooth’ variations in income from year to year, there are limits to its 
ability to manage fluctuations. It is possible that a material increase in the variability of Network Rail’s income would 
increase its ‘financial risk’ requirement, which is effectively funded via the Network Grant (i.e., taxpayers). 

Planned changes to the institutional structure of the rail industry will affect these financial flows. It is expected that, 
once fully established, Great British Railways (GBR) will specify the passenger train services currently directly 
contracted by the DfT as well as inheriting Network Rail’s present role of infrastructure manager. Although longer-
term access charging arrangements are still to be decided, it is expected that the future GBR infrastructure 
manager will be less exposed to changes in income from track access charges. It will still be exposed to income 
from freight and open access operators, but the scale of its overall exposure will be much reduced. 

In that context, our study finds that the econometric method estimates variable costs of a similar scale to the 
engineering cost model, and therefore it may not have a material impact on the variability of Network Rail’s income. 
However, this finding is subject to further improvement of the underlying renewals data. If further analysis suggests 
that an econometric approach would increase the variability of Network Rail's income, ORR will need to consider 
the trade-offs between any improvement in the economic efficiency and predictability of VUCs, against any 
increase in risk funding that Network Rail would require to mitigate the variability of income from access charges 
(noting that – over the longer term – the transition to GBR would remove much of this risk – albeit that GBR would 
then become exposed to the volatility of fares income – noting that fares income greatly exceeds that from VUCs 
today).  
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7.4. CONCLUSIONS AND RECOMMENDATIONS 

Overall, we conclude that the econometric results do not yet provide a sufficiently robust estimate of the 
relationships between passenger traffic, freight traffic and costs to support transitioning from an engineering-led 
approach to setting variable charges to an econometric-based approach. However, there is sufficient potential in 
the maintenance results to justify further exploration.  

For renewals, the very small sample size (5 regions) is a severe limitation which limits our ability to control for 
differences in infrastructure features which determine the likelihood of need for renewals activity. Addressing this 
data availability limitation should be the focus of work going forward. The significant and plausible coefficients on 
the combined (passenger plus freight) traffic variable suggest that a more granular dataset should yield results 
which are more robust at a disaggregated passenger and freight level.  

Although the econometric results do not yet provide a sufficiently complete picture of the causal relationships 
between traffic and costs, they do provide useful evidence which decision makers might take into consideration in 
respect of setting access charges. We take confidence in the statistically robust and plausible estimates of variable 
maintenance costs, the alignment of our maintenance results with results reported in the relevant literature, and the 
fact that our overall (maintenance + renewals) variable cost estimates are similar scale to those estimated by the 
engineering cost model at CP7. 

We also understand – based on discussions with Network Rail – that the engineering approach could be evolved to 
separately estimate the impact of a given increase in passenger and freight traffic on required maintenance and 
renewals activities over the next 5-year control period, thereby addressing the main criticism of the current 
approach. 

Therefore, rather than advocating for adopting an econometric method as the sole basis for setting VUCs in the 
near term, we would recommend using the econometric approach alongside the engineering approach to provide 
‘check and challenge’ of the VTISM results. Whilst a like-for-like comparison between the two approaches is not 
possible, the combined framework would leverage the strengths of both methods, providing a more comprehensive 
and reliable evidence base for setting variable charges in future. 

Recommendations 
Building on the findings and conclusions from our study, we make a small number of recommendations which ORR 
and Network Rail should consider as part of any further work on reform of variable charges: 

Recommendation 1: In the short-term, Network Rail should explore the feasibility of evolving ‘Step 1’ of the current 
engineering/VTISM-based approach to produce separate national passenger and freight usage charge rates, to 
address the issue that large changes in passenger traffic can drive material changes in freight charges. 

Recommendation 2: Consider the evidence from the econometric models as a cross-check and challenge of the 
results of the engineering cost models. This will help to establish appropriate track access charges which are more 
transparent, predictable and robust without relying excessively on the mechanistic application of any one model. 

Recommendation 3: To support the application of econometric methods to the analysis of Network Rail’s costs, 
Network Rail should develop a tonne-km traffic dataset which covers at least the last 10 years. Whilst it might not be 
possible to develop a new dataset which is entirely consistent with how traffic weight was measured before CP6, a 
broadly comparable dataset will facilitate a more detailed econometric analysis of the impact of both train 
movements and weight, which is of practical relevance since ‘wear and tear’ is a function of both. 

Recommendation 4: ORR may wish to encourage Network Rail to adopt a larger number of smaller ‘sub-regional’ 
units for reporting renewals expenditure and develop a more geographically granular renewals cost dataset. 
Although this would be a significant investment for Network Rail which will take time to develop, it is a necessary 
step in the application of econometric methods to robustly estimate the elasticity of Network Rail’s costs to 
passenger and freight traffic. 

To illustrate what this would mean if Network Rail were to adopt best practice from other European jurisdictions, 
SNCF Reseau records renewals expenditure at the track-section level, encompassing over 2,000 units of 
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observation across the network (a similar level of disaggregation to the ‘route sections’ geography used in GBRTT’s 
‘Industry Financial Model’). As we explain in Section 3.2, this enables a two-stage approach to the modelling of 
renewals expenditure which facilitates an analysis with more variation in terms of the key infrastructure 
characteristics which drive differences in costs between those units, and therefore helps to isolate the variations in 
cost which are driven by changes in traffic. 

However, noting that 2,000 track/route sections would be a substantial change from Network Rail’s approach to 
recording renewals expenditure today, we expect an improvement in the robustness of the analysis if Network Rail 
were able to disaggregate costs across 25–50 sub-regional units (i.e., similar to the number of MDU units). 

Recommendation 5: ORR and Network Rail should work together to better understand the differences in results 
between the econometric and engineering approaches. They should also consider the appropriateness of key 
assumptions from the perspectives of setting economically efficient incentives for track access along with 
supporting Network Rail to manage the asset in an efficient way over the long-term.   
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DETAILED OUTPUTS 

VARIABLE DEFINITION 

Table A1 below summarises the variables included in the regression analysis for future replicability. These variables 
are calculated at both the MDU-level and the regional level for maintenance and renewals regressions respectively.  

Table A-7-1: Description of Variables Used in Regression Analysis 

Variable Units Description 

Real Maintenance 
Expenditure 

£ million, 2023-
24 prices 

Total expenditure on maintenance activities, adjusted for inflation to 
2023-24 prices using the CPI index. 

Real Renewals 
Expenditure 

£ million, 2023-
24 prices 

Total expenditure on renewals activities, adjusted for inflation to 2023-
24 prices using the CPI index. 

Track length km Total length of railway track in kilometres. This is a scale variable, 
meaning units of observation with more track will likely incur higher 
costs. 

Electrification % The percentage of track that is electrified. In isolation, we would expect 
electrification to increase maintenance costs due to the additional 
trackside infrastructure and increased complexity of maintenance work. 
However, there may be other interacting factors – including more 
intensive use, lower track age and lower curvature – which influence 
the magnitude and direction of the estimated parameters. 

Embankments % The percentage of track that is constructed on raised ground 
(embankments). Track on embankments may incur higher costs due to 
the additional maintenance/renewal requirement of the earthworks, 
drainage, and engineering complexity. 

Soil cutting % The percentage of track that involves cutting into soil to create the track 
bed, potentially increasing erosion-related costs. 

Rock cutting % The percentage of track that involves cutting through rock, which may 
increase maintenance complexity and costs. 

Low speed % The percentage of track classified as low-speed (<= 35 mph). The 
higher the speed on the track, the higher the wear and tear costs. 

Mid-speed 1 % The percentage of track classified as mid-speed (35-75 mph). The 
higher the speed on the track, the higher the wear and tear costs. 

Mid-speed 2 % The percentage of track classified as mid-speed (75-105 mph). The 
higher the speed on the track, the higher the wear and tear costs. 

High speed % The percentage of track classified as high-speed (>= 105 mph). The 
higher the speed on the track, the higher the wear and tear costs and 
the lower the threshold for intervening to remedy alignment defects. 

Avg. weight lbs The average weight of trains operating on the track, influencing track 
wear and maintenance needs. 

Avg. track age years The average age of the railway track. In isolation, older track is more 
likely to need maintenance/renewals work. However, there is likely an 
interaction between the age of the track and the intensity of traffic, as 
Network Rail can leave track in situ longer in areas with lower traffic, 
before it needs to be replaced. 

Avg. sleeper age years The average age of sleepers. Older sleepers are more likely to need 
maintenance/renewals work. 
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Variable Units Description 

Avg. ballast age years The average age of ballast. Older ballast is more likely to need 
maintenance/renewals work. 

Sleeper concrete % The percentage of sleepers made of concrete, known for durability and 
lower maintenance needs compared to other materials. 

Sleeper wood % The percentage of sleepers made of wood, which may require more 
frequent maintenance due to wear and decay. 

Sleeper metal % The percentage of sleepers made of metal. Metal sleepers are cheaper 
than concrete and have relatively low maintenance needs. 

Wages Median gross 
weekly pay (£) 

Median gross weekly pay for full time workers. Higher wages will 
increase labour costs in the area. 

Year # A set of dummy variables representing each individual year in the panel 
of observation. They capture external factors which are assumed to 
affect all units of observation (MDU or regions) equally in each year. In 
this case it captures the impact of Covid-19 which had a negative 
correlation with traffic. We would expect it to have a positive coefficient 
(with respect to maintenance and renewals) since the unpredictable 
nature of the disruption would have made it inefficient for Network Rail 
to reduce its maintenance and renewal expenditure entirely.  

Source: CEPA analysis 

 SUMMARY OF CONTROL VARIABLES 

Table A-2: MDU-level control variables 

Variable Count Mean SD Min Max 

Track length (km) 350 841.0 347.0 349.0 1608.0 

Electrification (%) 350 53.2 34.8 0.0 100.0 

Embankments (%) 350 28.9 5.2 19.8 42.6 

Soil cutting (%) 350 21.3 5.0 10.7 31.4 

Rock cutting (%) 350 3.5 3.1 0.0 14.3 

Low speed (%) 350 10.9 0.5 2.8 24.5 

Mid-speed 1 (%) 350 51.1 17.6 19.7 76.7 

Mid-speed 2 (%) 350 25.3 13.1 0.0 60.0 

High speed (%) 350 12.7 17.1 0.0 54.1 

Avg. weight (lbs) 350 112.7 2.1 105.4 117.7 

Avg. track age (years) 350 25.5 5.5 14.0 41.6 

Avg. sleeper age (years) 350 29.9 5.6 14.5 45.0 

Avg. ballast age (years) 350 28.2 5.9 13.3 44.2 

Sleeper concrete (%) 350 77.3 10.7 54.4 93.4 

Sleeper wood (%) 350 14.0 6.8 4.2 33.3 

Sleeper metal (%) 350 8.4 6.7 0.0 23.2 

Median gross weekly pay 350 612.8 116.7 446.2 1137.7 

Source: CEPA analysis 
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 CEPA’S PREFERRED REGRESSION APPROACH 

In this appendix sub-section we outline our preferred econometric approach in a first-best scenario without data 
availability constraints, outlining the forefront of econometric modelling in transport literature and the data required 
to achieve it. Data constraints mean that we are currently unable to adopt this approach, and instead adopt a 
feasible “second-best” approach (as described in Section 5).  

Once the identified data limitations are addressed, the preferred approach can serve as a robust guide for 
estimating VUCs and applying econometrics more broadly within the rail industry. 

Differences between the adopted approach and our preferred approach 

To help illustrate how the ‘second best’ data constrained approach adopted in the study differs from our ‘preferred 
approach’ presented in Appendix A3, we use Table 5.1 below to summarise the key differences between the two. 

Table 5.1: Differences in approach 

Costs 

Maintenance and renewals activities are fundamentally different. Maintenance involves routine tasks to keep 
existing assets in working order and prevent degradation, focusing on short-term, regular interventions. In contrast, 
renewals replace or significantly refurbish infrastructure components nearing the end of their useful life. This means 
that maintenance and renewals costs should be estimated using separate regressions, as they will have a different 
relationship with traffic.  

 CEPA approach Preferred approach Reason for difference 

Unit of observation Annual MDU-level data for 
maintenance 

Annual region level data 
for renewals 

Annual route section 
data 

Data limitations. Neither 
traffic nor costs 
disaggregated further 

Measure of traffic Train-km Tonne-km and train-km Data limitations. Tonne-km 
traffic variables not available 

Measure of costs No disaggregation of 
maintenance but treat 
maintenance and renewals 
separately 

Disaggregated 
maintenance (for 
robustness) and 
renewals 

Data limitations. Maintenance 
and renewals not 
disaggregated further 

Measure of controls Control for both 
infrastructure and other 
cost drivers 

Control for both 
infrastructure and other 
cost drivers 

No difference 

Maintenance 
regression model 

Main results based off log-
log, although still estimate 
translog for robustness 

Translog to allow for 
non-linearities 

Translog parameters cannot 
be accurately identified given 
data limitations  

Unobserved 
heterogeneity 

Estimate both fixed and 
random effects and use 
random effects if possible 

Estimate both fixed and 
random effects and use 
random effects if 
possible 

No difference 

Renewals regression 
model 

Linear regression model Two-part approach to 
separately estimate 
probability and cost of 
renewals 

Data limitations. Only 
observe renewals cost at 
region level so cannot 
observe route sections where 
renewals occurs. 
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Previous studies have further disaggregated maintenance costs into track maintenance, signalling, earthworks, and 
other maintenance costs (Odolinski et. al., 2023). This allows the researchers to estimate separate elasticities for 
different categories of maintenance costs, for example traffic and signalling. This is important because it can 
improve the precision of cost charging and supports more effective infrastructure planning. Our approach would 
run separate regressions for maintenance and renewals expenditure, and then a suite of models using 
disaggregated maintenance costs as a robustness check. However, this was not possible with the data available. 

Maintenance regression 

For maintenance expenditure, our preferred approach is to estimate the elasticity of maintenance costs with 
respect to traffic by estimating a translog model. A translog model is preferred to a simple log-log model because it 
allows the elasticity of maintenance costs with respect to traffic to depend on both passenger and freight traffic, 
which allows for economies of scale. While more complex, the translog model still provides interpretable results, 
and using OLS ensures replicability without the non-convergence issues associated with the Box-Cox model. 
Additionally, adopting the translog model aligns Great Britain with industry best practices, as countries like France 
use this approach for estimating marginal costs. 

The translog model is represented in the equation below. 

ln𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 + 𝛽𝛽2 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝛽𝛽3(ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃)2 + 𝛽𝛽4(ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 )2 + 𝛽𝛽5 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝑿𝑿𝑖𝑖𝑖𝑖𝛾𝛾 + 𝛿𝛿𝑡𝑡 + 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 

Year fixed effects (𝛿𝛿𝑡𝑡) are included to capture economy wide trends that are common to all units (i.e track section). 
We model unobserved heterogeneity 𝑢𝑢𝑖𝑖 using fixed effects (FE) and random effects (RE). 𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃  is a measure of 
passenger traffic while 𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹  is a measure of freight traffic. Our preferred metric for measuring traffic is gross tonne-
km, as train weight is a key factor in track wear and associated costs. This measure more accurately reflects the 
relative impact of passenger versus freight trains on track infrastructure, given that freight trains are generally much 
heavier and thus contribute more significantly to track damage than passenger trains. However, Network Rail told 
us that tonne-km traffic data was not available on a consistent basis over the window of our study. 

The elasticities of interest from the translog model are derived by differentiating the cost function with respect to 
passenger and freight traffic, as shown below. 

𝜀𝜀𝑖𝑖𝑖𝑖𝑃𝑃 =
Δ ln𝐶𝐶
Δ ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃

= 𝛽𝛽1 + 2𝛽𝛽3 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 + 𝛽𝛽5 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹  

𝜀𝜀𝑖𝑖𝑖𝑖𝐹𝐹 =
Δ ln𝐶𝐶
Δ ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹

= 𝛽𝛽2 + 2𝛽𝛽4 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝛽𝛽5 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃  

Renewals regression 

The preferred approach to estimating the elasticity of renewals expenditure requires a two-part approach. This is 
due to the lumpy and infrequent nature of renewals on any track or route section. The two-part approach separately 
models the probability of any renewals occurring on a track or route section each year, and conditional on renewals 
occurring, the cost of those renewals. This approach is discussed in detail by Odolinski et al (2020).  

The first stage models the probability of renewals occurring as a function of traffic and a relevant set of controls. 
This is presented in the equation below. 

𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 > 0|𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 ,𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 ,𝑿𝑿𝒊𝒊𝒊𝒊) = Φ(β0 + 𝛽𝛽1 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 + 𝛽𝛽2 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝑿𝑿𝒊𝒊𝒊𝒊𝛾𝛾 + 𝛿𝛿𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖) 

Where Φ is the standard normal cumulative distribution function (CDF). This is a probit model and can be estimated 
using maximum likelihood.  

The second stage models the cost of renewals conditional on it occurring as a function of traffic and a relevant set 
of controls.  

ln𝐶𝐶𝑖𝑖𝑖𝑖 |𝐶𝐶𝑖𝑖𝑖𝑖 > 0 = 𝛼𝛼0 + 𝛼𝛼1 ln𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃 + 𝛼𝛼2 ln𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹 + 𝑿𝑿𝑖𝑖𝑖𝑖𝜋𝜋 + 𝜓𝜓𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖 

This part can be estimated by running OLS on the restricted sample that contains only observations with positive 
renewals. Notice that the parameters are different in both stages of regression, meaning that the relationship 
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between traffic (or controls) and the probability of renewals is allowed to be different to the relationship between 
traffic (or controls) and the cost of renewals. For example, track age likely predicts the probability of renewals but 
may not predict the cost of renewals.  

Note that the Tobit model is very similar to the model described above but restricts 𝛼𝛼 = 𝛽𝛽 so the effect of traffic on 
the probability of renewals and the cost of renewals is the same. 

The marginal effects of traffic are 

𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝑃𝑃 = 𝛽𝛽1𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 > 0) +  𝛼𝛼1 

𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝐹𝐹 = 𝛽𝛽2𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 > 0) +  𝛼𝛼2 

The elasticities of interest can then be calculated as 

𝜀𝜀𝑃𝑃 =
∑ 𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝑃𝑃  𝑄𝑄𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖

∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
      and      𝜀𝜀𝑃𝑃 =

∑ 𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝐹𝐹  𝑄𝑄𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖

∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

The appropriate measure of traffic for the renewals model is not immediately clear. It is unlikely that train weight 
directly drives renewals costs or renewal likelihood in the short run. However, current traffic weight is likely highly 
correlated with historical weight, which may influence the need for renewals. Conversely, measuring traffic in train-
km may better capture the cost of a possession, which could represent the primary variable cost in renewals 
activities that typically require multi-year planning. 

Totex modelling 

Running separate regressions for maintenance and renewals aligns with the methodology used in other studies and 
provides flexibility to tailor the econometric approach according to differences in Network Rail's planning 
processes. For example, we can incorporate time ths in the renewals model to account for longer planning cycles 
typical of larger renewals projects. However, we recognise that there is also an asset management ‘trade-off’ 
between maintenance and renewals, in that a well-maintained asset may last longer (and vice versa, timely 
renewals will reduce maintenance costs) such that a responsible asset manager seeks to minimise whole life, whole 
system total costs. Therefore, we would also recommend conducting total expenditure (totex) regression modelling 
as a robustness check to capture potential interdependencies. Unfortunately, the inclusion of renewals in the totex 
model introduces the same data limitations encountered in the renewals regression, making the totex results less 
robust under current conditions. We recommend conducting totex modelling once the data limitations are 
addressed to achieve more reliable insights into the trade-offs between maintenance and renewals expenditure.  



 

53 

 REGRESSION SENSITIVITIES 

Table A-3: Maintenance sensitivity analysis 

Dependent variable Covid Dummy CP7 Dummy Time trend 
Log maintenance expenditure RE RE RE 
    
Log passenger train-km 10.208** 12.200*** 10.953** 
  (4.858) (4.496) (4.764) 
Log passenger train-km 
squared  

-0.300** -0.359*** -0.329** 

  (0.133) (0.122) (0.130) 
Log freight train-km  0.786 0.776 0.383 
  (1.384) (1.310) (1.334) 
Log freight train-km squared  -0.020 -0.013 -0.010 
  (0.022) (0.021) (0.024) 
Log passenger * log freight 
train-km 

-0.011 -0.022 -0.003 

 (0.080) (0.071) (0.077) 
Time trend   0.028*** 
   (0.008) 
Covid Dummy YES NO NO 
CP7 Dummy NO YES NO 
Constant -93.497** -111.055*** -93.742** 
 (45.867) (41.639) (44.153) 
    
Observations 350 350 350 
Number of id 35 35 35 
Controls YES YES YES 
R-squared 0.540 0.551 0.514 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Including year fixed effects in panel regressions can be a straightforward way to control for time-specific shocks 
affecting all units equally, such as macroeconomic conditions or broad policy changes. However, blindly applying 
year fixed effects has drawbacks: it can absorb meaningful variation that might otherwise reveal trends or effects 
specific to particular periods, and it may mask the influence of critical time-related events that affect only certain 
years or periods in a unique way, like a pandemic or regulatory shifts. In this context, replacing year fixed effects 
with targeted dummies (such as a Covid dummy, regulatory cycle dummy, or a time trend with a squared term) 
helps to capture relevant temporal effects more precisely, potentially improving the interpretability of the model. 

In the sensitivity analysis, three alternative models replace year fixed effects with targeted time variables to account 
for specific temporal influences on maintenance expenditures. The first model includes a Covid dummy for 2020-
2023. This alternative does not appear to significantly impact the coefficients on the primary variables (passenger 
and freight train-km), which remain comparable to those in the year fixed effects model, though the within R-
squared decreases slightly from 0.583 (with year fixed effects) to 0.540. This suggests that while the Covid period 
captures some temporal effects, year fixed effects provide a slightly better model fit by capturing additional year-
specific variation beyond just the pandemic period. 

The second model includes a CP7 dummy for 2019-2023, which has a more noticeable impact on the passenger 
coefficient compared to the Covid dummy, though the overall results remain broadly similar. The choice between 
these two dummies depends on the assumed timing of a structural break in the relationship between maintenance 



 

54 

costs and traffic. Again, the R-squared decreases slightly to 0.551, suggesting that year fixed effects provide a 
slightly better model fit.  

The third model introduces a linear time trend term 𝑡𝑡, capturing a continuous time effect rather than discrete year 
or event-based controls. Here, the linear time trend is positive and significant at the 1% level, indicating an upward 
trend in maintenance expenditures over time. This model also shows a slight reduction in explanatory power (R-
squared of 0.514) compared to the year fixed effects model, though it retains similar passenger-km coefficients. 

Regulators often use time trends to estimate efficiency, as the time trend reflects the annual increase in costs after 
accounting for all other relevant cost drivers. However, in this context, interpreting a positive time trend as cost 
inefficiency requires caution. This is because the model may not capture potential uncontrollable factors that drive 
additional costs. For instance, if Network Rail faces an increased need for maintenance or renewals due to external 
demands, costs may rise each year even if operational efficiency improves. Therefore, a positive time trend could 
reflect rising maintenance demands rather than inefficiency. 

Overall, the findings suggest that year fixed effects provide the best fit for capturing year-by-year variation in 
maintenance expenditures. However, when there is concern about over-fitting or losing interpretability with year 
fixed effects, the Covid dummy and time trend offer reasonable alternatives that capture key time effects without 
masking specific trends. 

Table A-4: Renewals sensitivity analysis 

Dependent variables Log-Log Log-Log 

Log renewals expenditure RE RE 

   

Log passenger train-km 0.507* 0.327 

 (0.264) (0.418) 

Log passenger train-km (lag)  0.233 

  (0.163) 

Log freight train-km -0.374** -0.131 

 (0.174) (0.185) 

Log freight train-km (lag)  -0.188 

  (0.263) 

Year FE YES YES 

Constant -1.267 -2.691 

 (5.938) (6.862) 

   

Observations 50 45 

Number of id 5 5 

Controls YES YES 

R-squared 0.917 0.912 

Robust standard errors in parentheses 

   *** p<0.01, ** p<0.05, * p<0.1 

We examined the use of lagged traffic variables to account for the fact that renewal costs are often scheduled in 
advance and can be irregular. By including lags, we aimed to isolate the short-run marginal cost of traffic on 
renewals. However, incorporating lags reduced our sample size by 10% (5 out of 50 observations per lag), limiting 
the number of lags we could include. The model with lagged passenger and freight traffic shows that while the 
inclusion of lags does not change the sign of traffic elasticities, it does reduce their magnitude by distributing the 
effect over two years. Notably, the coefficients in these lagged models are statistically insignificant. 
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 HAUSMAN TEST FOR FE VS RE 

We conduct the Hausman test to identify the preferred panel data model, testing specifications without controls for 
simplicity. We note that our regression results remain consistent and exhibit greater precision when controls are 
included. The null hypothesis for the Hausman test is that there is no systematic difference between the coefficients 
of the fixed effects and random effects models. If we fail to reject the null hypothesis, the random effects model is 
preferred, as it is both efficient and consistent under this condition. Conversely, if we reject the null, it indicates a 
systematic difference between the coefficients, favouring the fixed effects model as it provides consistent estimates 
in this case. The hypotheses for the Hausman test are as follows: 

𝐻𝐻0: 𝐸𝐸[ (𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅) ∣∣ 𝑋𝑋 ] = 0 

𝐻𝐻1: 𝐸𝐸[ (𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅) ∣∣ 𝑋𝑋 ] ≠ 0 

The test statistic is calculated as shown below and is distributed chi squared. 

𝐻𝐻 = (𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅)𝑇𝑇(𝑉𝑉𝐹𝐹𝐹𝐹 − 𝑉𝑉𝑅𝑅𝑅𝑅)−1(𝛽𝛽𝐹𝐹𝐹𝐹 − 𝛽𝛽𝑅𝑅𝑅𝑅) 

𝛽𝛽𝐹𝐹𝐹𝐹  is the FE estimator that is known to be consistent and 𝛽𝛽𝑅𝑅𝑅𝑅  is the RE estimator that is only consistent (and 
efficient) under the null.  

The table below presents our Hausman test results. We find that we do not reject the null hypothesis for any of the 
models for maintenance, indicating that the RE model is preferred. In our main results, the RE model not only fits 
the data best, as shown by the highest R-squared values, but also identifies significant relationships, reflecting its 
greater efficiency compared to the FE estimator. This efficiency advantage allows the RE model to capture 
associations with higher precision, further supporting its selection as the preferred approach in our analysis. For our 
renewals regression, the model failed to meet the asymptotic assumptions required for the Hausman test. As a 
result, we are unable to comment on the preferred model based on this test. 

Table A-5: Hausman test of FE vs RE 

Model Cost Test statistic Prob > test stat Decision Preferred model 

Translog  Maintenance 13.46 0.413 Do not reject null RE 

Log-log Maintenance 12.30 0.342 Do not reject null RE 

Log-log Renewals Failed to meet 
asymptotic 

assumptions 

N/A N/A N/A 

Source: CEPA analysis 

 FULL MAINTENANCE REGRESSION RESULTS 

For completeness, we present the full regression results from our log-log and translog models with random effects. 
It is important not to overemphasize the significance of individual control variables, as these controls are included 
primarily to account for economically relevant cost drivers. Some controls may capture overlapping effects, 
reflecting shared influences on costs rather than distinct causal relationships. 

Table A-6: Full maintenance regression results 

Dependent variable Log-log Translog 

Log maintenance expenditure RE RE 

   

Log passenger train-km 0.264*** 10.555** 
  (0.060) (4.795) 

Log passenger train-km squared   -0.311** 

   (0.132) 
Log freight train-km  0.095** 0.784 
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  (0.039) (1.310) 

Log freight train-km squared   -0.020 
   (0.023) 

Log passenger * log freight train-km  -0.011 

  (0.075) 

2015 year -0.014 -0.014 
 (0.016) (0.015) 

2016 year 0.031 0.028 

 (0.023) (0.022) 
2017 year 0.041 0.033 

 (0.032) (0.032) 

2018 year 0.008 0.006 
 (0.028) (0.027) 

2019 year 0.109*** 0.110*** 

 (0.041) (0.040) 
2020 year 0.215*** 0.207*** 

 (0.054) (0.054) 

2021 year 0.203*** 0.191*** 
 (0.057) (0.059) 

2022 year 0.232*** 0.220*** 

 (0.064) (0.064) 

2023 year 0.215*** 0.208*** 
 (0.069) (0.068) 

Log track km 0.222** 0.212** 

 (0.088) (0.091) 
Log wages 0.190** 0.137** 

 (0.077) (0.063) 

Proportion electrified 0.158** 0.111 
 (0.078) (0.082) 

Proportion embankment -0.605 -0.160 

 (0.579) (0.706) 
Proportion soil cutting 1.377** 1.221* 

 (0.640) (0.637) 

Proportion rock cutting -3.700*** -4.185*** 

 (1.022) (1.122) 
Log average track weight -2.526 -0.963 

 (3.706) (3.592) 

Log average track age -0.050 -0.110 
 (0.289) (0.292) 

Log average sleeper age -0.130 0.155 

 (0.666) (0.630) 
Log average ballast age -0.071 -0.241 

 (0.445) (0.421) 
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Proportion sleepers concrete 2.863 2.930 

 (2.564) (2.877) 

Proportion sleepers wood 2.342 2.440 
 (2.759) (3.032) 

Proportion sleepers metal 2.489 2.718 

 (2.683) (3.035) 
Proportion of low-speed track 1.422** 1.453** 

 (0.602) (0.634) 

Proportion of high-speed track 0.172 0.011 
 (0.279) (0.324) 

Proportion of mid-speed (1) track 0.564** 0.520 

 (0.288) (0.360) 

Constant 4.544 -90.979** 
 (17.257) (44.285) 
   
Observations 350 350 

Number of id 35 35 
Year FE YES YES 

Controls YES YES 

Overall R-squared 0.771 0.722 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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 SCOPE OF WORK 

Table A-7: Scope of work 

Scope of work 

01 Conduct a literature review outlining how European regulators/infrastructure managers calculate the 
charges to recover costs directly incurred. 

02 Consider the level of granularity required to build a robust econometric model, liaising with Network Rail on 
the availability of the necessary data. 

03 Assess the advantages and disadvantages of using these inputs compared with those used in other 
countries and how this is expected to affect the robustness of findings, including in comparison with the 
current engineering approach. 

04 Collect data (preferably panel data on Network Rail’s maintenance and renewals costs and cost drivers at an 
appropriate level of granularity) and build a robust econometric model that informs the calculation of 
variable usage charges for passenger and freight operators. 

05 Based on the results, estimate (i) the expected direct (marginal) costs of running the Network Rail network; 
(ii) the marginal costs for passenger and for freight traffic; (iii) the individual VUCs in the format of a price list 
(covering passenger and freight vehicles); and (iv) compare this price list with the CP7 price list which was 
produced using the engineering models in PR23. 

06 Analyse the econometric model’s sensitivity to its key assumptions and input variables. 

07 Assess the merits of the econometric approach in terms of practicability, robustness, and transparency 
relative to the current engineering cost-model. 

Source: ORR 
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